
FLARE: An FPGA-Based Universal Large Flow
Detection Engine

Arish Sateesan1[0000−0002−8197−0097] ⋆, Jo Vliegen2[0000−0003−4258−2208], and
Nele Mentens2,3[0000−0001−8753−7895]

1 iNETS, RWTH Aachen University, Aachen, Germany
2 COSIC-ES&S, ESAT, KU Leuven, Belgium
3 LIACS, Leiden University, The Netherlands

arish.sateesan@rwth-aachen.de; {jo.vliegen,nele.mentens}@kuleuven.be

Abstract. Detecting large flows in high-speed networks is a persistent
challenge in network security, often hampered by processing speed, mem-
ory demands, and the need for versatile handling of a range of attack vec-
tors. The emergence of FPGA-based solutions offers promising prospects
for real-time, scalable network security. Yet, precise detection of diverse
large flow attacks introduces significant complexity and calls for the
coordination of multiple independent detection algorithms. This paper
presents FLARE, a large flow detection framework designed to address
these challenges by integrating multiple detection algorithms into a uni-
fied system. FLARE can monitor network flows in real-time, handling
data rates of up to 200 Gbps, and employs a shared architecture that
minimizes resource usage while enhancing detection accuracy and coor-
dination. The proof-of-concept implementation on the Alveo U250 data
center accelerator shows that FLARE can process an entire packet in
every clock cycle, irrespective of the throughput of the employed detec-
tion algorithms. Beyond large flow detection, FLARE provides a versatile
and scalable platform applicable to a broad spectrum of network security
applications.

Keywords: Large flow detection· Heavy-hitter detection · FPGA · DDoS · Net-
work security

1 Introduction

The rapid growth in data rates in recent years has significantly raised the bench-
marks for network performance. However, this growth has been paralleled by a
rise in cyber threats, particularly volumetric distributed denial of service (DDoS)
attacks. Mitigating these attacks, especially volumetric attacks like large flows,
otherwise called heavy-hitters, has become more challenging than ever due to
the surge in network speeds and diversity of attack patterns. Large flows refer
to network flows that consume considerably larger bandwidth than the permit-
ted within a given time frame. These flows can degrade network performance,
⋆ The author carried out this work while at KU Leuven.

2 A. Sateesan et al.

Network
packet

Pass

Drop

Pass
Malicious?

Write to Blacklist
Yes

No

blacklist

Yes
Parser

Mitigation policy Detection

Packet
header

flow
identifier

present?
No

measurement

Fig. 1: Generic large flow detection system.

leading to congestion and slowdowns, and may indicate malicious activity like
DDoS attacks. Large flow detection involves identifying and mitigating these
flows, which is a fundamental problem in networking and holds significant im-
portance in many applications, such as volumetric DDoS attack detection and
traffic engineering [1–3]. This process typically relies on analyzing network traffic
data to identify flows that exceed a set data volume or duration threshold.

Figure 1 shows a real-time flow-based large flow detection system. A network
flow is the collection of all network packets that share the same characteristics
and are identified by a unique flow identifier (Flow ID). The Flow ID is charac-
terized by the 5-tuple, 〈source IP address, source port, destination IP address,
destination port, protocol ID〉. In the large flow detection system, a parser ex-
tracts the flow ID from the packet header and forwards it to the mitigation and
detection blocks. The real-time monitoring results or a predefined set of rules
may define the mitigation policy. A commonly used mitigation policy involves
both blacklisting [4, 5], maintaining a list of malicious Flow IDs or their fin-
gerprints (f), and dropping any incoming packets that match the blacklist. The
detection algorithm determines whether the flow is malicious based on traffic fea-
tures extracted by the flow measurement unit, where flow measurement refers
to the collection and analysis of network flow data.

Previous approaches to large flow detection involve setting a predefined thresh-
old within a specific time frame or measurement epoch. However, this approach
struggles to detect a variety of these attack patterns, such as overuse flows [5],
which are steady-rate flows slightly exceeding the allocated bandwidth, and
burst-flood attacks, which involve periodic transmission of large data bursts
within short timeframes [6]. Complete detection capabilities against such di-
verse patterns often require multiple independent algorithms, increasing com-
putational complexity, resource demands, and coordination challenges. With in-
creasing network speeds, real-time processing demands have outpaced the ca-
pabilities of existing detection frameworks. Existing research has yet to offer
a universal detection framework capable of coordinating multiple algorithms
to manage a broad spectrum of attacks effectively. Universal sketches such as
UnivMon [1] and Light-weight Universal Sketch (LUS) [7] take advantage of
dedicated measurement modules to collect flow metrics that can be utilized for
various other applications. Nevertheless, this approach is orthogonal to the de-

FLARE: An FPGA-Based Universal Large Flow Detection Engine 3

tection of a range of attack patterns of volumetric DDoS attacks, as it focuses
only on traffic measurement tasks.

This paper introduces FLARE, an FPGA-based large flow detection engine
designed for real-time monitoring and detection of large network flows on high-
speed networks, capable of handling data rates up to 200Gbps. Unlike universal
sketches like UnivMon and LUS, which aim to generalize detection methods
across various applications, FLARE offers a specialized approach by integrating
dedicated detection units to identify diverse patterns of network attacks. This
positions FLARE as a comprehensive detection system for high-performance
data center accelerators, while also broadening its applicability to addressing a
wider range of network security challenges beyond large flow detection.

The key contributions of FLARE include:

– A versatile detection framework that effectively integrates and coordinates
distinct detection units to identify a wide range of attack patterns, optimized
for data center accelerator cards targeting Terabit Ethernet (data rates greater
than 100 Gbps).

– A shared architecture that minimizes resource requirements and prevents re-
dundant blacklist entries by facilitating the sharing of blacklists among detec-
tion units. Moreover, it uses a probabilistic blacklist, ensuring reduced memory
requirement and constant lookup delay irrespective of the blacklist size.

– An independent detection framework and packet forwarding mechanism, which
can forward a network packet in every clock cycle, ensuring that the through-
put is not affected by algorithm complexity.

2 Challenges in Designing a Large Flow Detection
System

Overcoming the challenges of fast and accurate detection of large flows while
ensuring efficient hardware deployment involves a multitude of related problems,
which will be discussed in the subsequent sections.

2.1 The Need for Dedicated Algorithms

Detecting large flows is a multi-dimensional challenge involving both detection
accuracy and range, requiring tailored algorithms for different attack types. The
frequent emergence of new and sophisticated attacks, such as carpet bomb at-
tacks [8], underlines this requirement. Large flow detection algorithms typically
set a detection threshold based on the average volume over a measurement pe-
riod. The choice of measurement period and threshold significantly impacts de-
tection accuracy. A long period with a high threshold might overlook potential
threats, while a short period with a low threshold risks false positives. Exist-
ing algorithms [2, 3, 9] often target large flows that are significantly above (100
to 1000 times) the allocated bandwidth and maintain a steady sending rate.
These algorithms, often using simple data structures like sketches [10], tolerate

4 A. Sateesan et al.

some measurement errors. While this simplicity of sketches is attributed to lower
memory requirements and reduced complexity, it can be exploited by attackers
who send traffic just below the high detection threshold, evading detection.

Detecting flows with non-steady rates, such as burst-flood attacks involving
periodic transmission of large data bursts within short timeframes [6], intro-
duces additional challenges. Algorithms designed for steady-rate detection may
fail to identify bursts, as the average volume over a long period may fall below
the threshold. Reducing the measurement period to capture bursts can lead to
false positives in steady-rate flows. To accurately detect non-steady-rate flows,
the detection algorithm must minimize estimation errors, which can be ampli-
fied by sketch-based methods. More sophisticated approaches, such as LOFT [5],
can detect flows slightly exceeding the allocated bandwidth, termed as low-rate
overuse flows. LOFT eliminate the need for distinct detection algorithms to de-
tect low-rate and high-rate overuse flows. ALBUS [6] is another precise detection
algorithm designed for detecting burst-flood attacks. These algorithms are less
tolerant of estimation errors. However, relying solely on a single detection al-
gorithm is insufficient for comprehensive detection, as LOFT can only detect
steady-rate flows, highlighting the need for dedicated algorithms like ALBUS for
detecting distinct attack vectors.

2.2 Hardware Deployment and Challenges

FPGAs offer a promising solution for deploying detection algorithms by pro-
viding significant parallelism to accelerate computational tasks and meet real-
time processing requirements. While graphics processing units (GPU) excel in
high-performance computing due to their high throughput design, they aren’t
optimized for the low-latency processing required by applications like large flow
detection. This task demands consistent, real-time performance, and FPGAs can
be specifically customized to provide precise, deterministic timing, and highly op-
timized application-specific hardware designs [11]. Moreover, large flow detection
primarily involves operations like data storage and membership queries rather
than heavy computations. Transferring data between the CPU and GPU can add
extra latency and complexity, whereas FPGAs can be embedded directly into
data paths (bump-in-the-wire architectures), thereby minimizing data movement
and associated delays [12].

The applications of FPGAs in data centers and networking environment
showcases their exceptional potential in high-speed networking applications [13–
16]. However, deploying multiple detection units is suboptimal due to the in-
creased resource requirements and complexity, especially in high-speed environ-
ments. With blacklisting being the mitigation policy, each detection unit requires
a dedicated blacklist, consuming more memory and increasing the detection over-
head. Additionally, multiple algorithms identifying the same malicious flow can
create redundant blacklist entries, reducing memory efficiency and increasing
query latency. The accuracy of large flow detection algorithms solely depends on
the accuracy of the measurement module. Limited on-chip memory on FPGAs

FLARE: An FPGA-Based Universal Large Flow Detection Engine 5

can reduce measurement accuracy, as sketch-based units may produce signifi-
cant overestimations under limited memory. Moving to off-chip memory is not
desirable due to considerable access delays, hampering real-time processing [17].
Coordinating algorithms with different throughput and query latencies further
complicates hardware deployment, potentially slowing down the system and hin-
dering parallel processing capabilities.

3 Proposed Detection Framework - FLARE

Figure 2 shows the system architecture of FLARE. FLARE is designed to func-
tion as a bump-in-the-wire, performing online flow monitoring while positioned
between the external network and the protected network to filter traffic. The
complete detection engine integrates a parser, a traffic filtering unit, and ad-
ditional functional and control logic responsible for handling incoming traffic,
in conjunction with the detection framework and blacklist module. It buffers
incoming packets during processing, forwarding legitimate ones to the network
and dropping malicious ones. Further elaboration on the components of FLARE
is provided in the subsequent sections.

Blacklist

AXIS
buffer[0]

AXIS
buffer[1]

AXIS
buffer[2]

AXIS
buffer[3]

match

out-valid

S

R

Q

Q

pass_frame

CE

data_in
read_en

valid

m_axis_tready

AXIS OUT

data_out

start_parse

query

Filter

Brain 1

Control &
management
Interface(CMI)

Brain n

Ag
gr

eg
at

or

configure

data_valid

data_last

AXIS IN

Detection framework

FIFOFIFOFIFO

0 0

1

Skid buffer

Parser

Fig. 2: System architecture of FLARE.

3.1 Parser and Network Filter

The network parser extracts the flow ID and various attributes from incoming
flows, such as flow size, EtherType, and protocol. Based on these attributes,
the network filter identifies and directs flows meeting the filtering criteria to the
blacklist and detection framework. In FLARE, the filtering criteria are based on
the EtherType and IP protocol, and it inspects flows with EtherType=IPv4 and
Protocol=TCP/UDP . In the proof-of-concept implementation of FLARE (Sec-
tion 4), the protocol used is UDP. Flows that do not match these criteria are

6 A. Sateesan et al.

passed through without inspection. The filtering policy is configurable and can
be modified during run-time using the control and management interface in the
detection framework.

3.2 Detection Framework

The detection framework, the core of FLARE, comprises multiple detection al-
gorithms (referred to as brains), a control and management interface (CMI), and
an aggregator. Detailed descriptions of these modules are provided in subsequent
sections.
Brain: The brain (detection algorithm) determines whether an incoming flow
is malicious. Multiple brains can operate concurrently, each tasked with a spe-
cific detection role. While brains operate independently, they share a common
blacklist, minimizing memory usage. FLARE can also support the sharing of
measurement unit, given that the detection algorithms are designed that way,
thereby further reducing hardware resources. In such a case, the detection algo-
rithm can function only as a smart decision-maker.
Control and Management Interface (CMI): The CMI is an AXI-Lite mod-
ule responsible for controlling and validating the detection framework and net-
work filter. CMI also serves the purpose of a brain as it allows users to manually
add entries to the blacklist while providing a user interface for testing, framework
validation, and blacklist management. The CMI uses a 32-bit control register,
along with dedicated data and status AXI slave registers for reading and writing
to the blacklist and verifying functionality across modules. The control register
also allows dynamic modification of the filtering policy.
Aggregator: The aggregator coordinates interactions among the brains, CMI,
and the blacklist. It manages multiple concurrent brains and forwards flow IDs
of the detected malicious flows to the blacklist. The aggregator is a smart multi-
plexer that prevents data loss by ensuring proper sequencing of write operations
to the blacklist. The hardware architecture of the aggregator is shown in Fig-
ure 3, which can handle three brains and is easily expandable. Data from each
brain is queued into the respective data FIFOs (brain B0 is not available, hence
set to zero), and the aggregator controls the flow of data to the blacklist based
on FIFO status and a predefined priority using a finite state machine (FSM).

FIFOFIFOFIFO B1 2

0
1WE

Flow ID
TTL

0

FSM

3
empty

empty

busy

start
WE

Flow ID
TTL

Data from
brain 1 (B1)

Data from
brain 2 (B2)

Blacklist
RD_EN_FIFO (B1)

0

mux_sel

RD_EN_FIFO (B2)

 mux_sel[0]
 mux_sel[1]

 0 (B0)

Aggregator

data

data

FIFOFIFOFIFO B2

A

B

RD_EN_FIFO

RD_EN_FIFO

B A

Fig. 3: Aggregator.

FLARE: An FPGA-Based Universal Large Flow Detection Engine 7

3.3 Blacklist Module

The blacklist module consists of a shared blacklist and the associated time-to-
live (TTL) logic.
TTL Logic: The TTL logic helps to distinguish the flow IDs written to the
blacklist by different brains. Each algorithm may have a distinct measurement
period or epoch, resulting in varying reset periods. The expiration of each entry
on the blacklist depends on the reset period of the corresponding brain. A TTL
value, associated with each flow ID, indicates the expiry time of a blacklist entry
with respect to a timestamp and is specific for each brain. Figure 4 illustrates
the logic circuitry employed in TTL logic. A combination of a prescaler, counter,
and an adder generates a value referred to as TTLT (Time-To-Live Timestamp),
which is the sum of the current timestamp and the TTL value. This value is
stored alongside the flow ID in the blacklist. The prescaler is a clock divider,
and it drives a 16-bit counter that produces the timestamp. The size of the TTLT
value is taken as 16 bits. The divisor to the prescaler is calculated based on the
clock frequency and the size of the TTLT value.

Prescalar
(f/d) Counter

+ {ID,TTLT}

Blacklist

TTL

Timestamp

>

TTLT

CE

clock

>

Ag
gr

eg
at

or

flow ID

TTLT

expired/not
expired

WR

Query

Blacklist module

frequency = f
Comparator

Comparator

Fig. 4: TTL logic.

Blacklist: The blacklist, implemented using SPArch-based [18] content address-
able memory (CAM), consists of a sketch component and a memory unit for TTL
values. SPArch is a probabilistic data structure that is used as a counter array,
which can be modified as a probabilistic key-value store, a faster alternative to
content addressable memories. The architecture of the blacklist is shown in Fig-
ure 5. It uses a hash function (Xoodoo-NC [19]) to map flow IDs to the sketch
using hash values h1 to hd, where d is the number of arrays in the sketch. The
size of the hash values is log2m, where m is the depth of each memory array. The
blacklist stores only an 8-bit fingerprint (f) of the flow ID, which is generated
using the hash value hf . Each hash-indexed cell in the sketch stores f and the
address A, which points to the TTL memory. The TTL memory stores the as-
sociated expiration information (TTLT value). For a detailed description of the
update and query operations of the blacklist, we refer to the original work [18].

If a flow ID already exists in the blacklist (previously written by another
brain), the existing TTLT value is compared with the new entry, and if the new
value is greater, it replaces the old one. To inspect which brain added a specific

8 A. Sateesan et al.

flow ID to the blacklist (with the assistance of CMI), an additional identifier tag
field of 1 or 2 bits (depending on the number of brains) can be added to the
TTL memory. The blacklist is queried for every incoming flow that meets the
filtering criteria. If the incoming flow is present in the blacklist but the TTLT
value is expired, the flow is allowed to pass and the entry is removed from the
blacklist. The address of the removed entry is stored in a FIFO and re-used later.
If required, the blacklist can be reset periodically based on the reset periods of
the brains.

Sketch

flow ID

TTLT

Fingerprint Address 16 bits

Mem

Address

Fig. 5: Architecture of blacklist

3.4 Skid Buffer

The skid buffer, implemented using data FIFOs, buffers outgoing packets until
the master AXIS interface is ready. It also handles clock domain crossing. The
buffer is controlled by a pass_frame signal (refer to Figure 2), which ensures
that packets are transmitted only after blacklist processing. The reset signal of
the SR flip-flop keeps the pass_frame signal active for one packet, guaranteeing
correct transmission behaviour.

4 Implementation of a Proof of Concept

We implemented a proof of concept (PoC) for FLARE to validate its feasibility.
The PoC employs the LOFT [5] detection algorithm and CMI as the brains, with
LOFT handling large flow detection and CMI enabling manual additions to the
blacklist. LOFT, although has a sophisticated design, is chosen due to its superior
detection accuracy, which can be as low as 1.5× the allowed bandwidth. While
other algorithms, like EARDet [4], also follow the blacklisting model, LOFT
was chosen for its efficiency and hardware suitability as it employs sketches for
flow measurement. This PoC demonstrates the efficiency of FLARE, and the
implementation and hardware evaluation are detailed in this section.

FLARE: An FPGA-Based Universal Large Flow Detection Engine 9

4.1 Hardware Platform

The hardware evaluation was conducted on the Alveo U250 data center ac-
celerator card [20]. Alveo U250 is a robust FPGA-based solution to accelerate
data center workloads, supporting data rates up to 200Gbps. Alveo employs two
QSFP28 ports as the network interface that can transmit/receive 512 bits per
clock cycle. The card has extensive resources: 1,341K LUTs, 2,749K flip-flops,
11,508 DSP slices, 54MB of on-chip memory with 38TB/s bandwidth, and 64GB
of off-chip DDR memory with 77GB/s bandwidth. As shown in Figure 6, the
Alveo platform is divided into static and dynamic regions. The static region
establishes the fundamental framework for the platform, including essential el-
ements such as PCIe connectivity, board management, sensors, clocking, and
reset. The dynamic region is subdivided into four super logic regions (SLRs),
and are available for user-programmed RTL logic. For a deeper understanding
of the Alveo platform, we refer to the Alveo user guide [21].

Static
region

SLR 3

SLR 2

SLR 1

SLR 0D
yn

am
ic

 re
gi

on

PCIe

Host
processor

DDR

DDR

DDR

DDR

Fig. 6: Alveo U250 floorplan.

Q
SF

P
C

ag
e

G
T

Tr
an

sc
ie

ve
r

100G
Ethernet

IP

AXI Control Slave

AX
IS

 S
la

ve

FLARE

RTL Kernel

Dynamic Region (Kernel)

St
at

ic
 R

eg
io

n
(S

he
ll)

PCIe
XDMA

HOST
Sw

ap
 k

er
ne

l
Network

Alveo U250

AX
IS

 M
as

te
r

Fig. 7: Evaluation testbed.

4.2 Experimental Setup and Implementation Details

FLARE is integrated into the dynamic region of Alveo U250 as an AXI4-Stream
IP, along with the CMAC kernel (100G Ethernet Media Access Control), using
Xilinx Vivado 2022.1. The CMAC kernel is adopted from the XUP Vitis network
example (VNx) [22], which uses the Ultrascale+ integrated Ethernet subsystem.
The CMAC core is built around the CAUI-4 (100 Gigabit Attachment Unit In-
terface), which uses four lanes operating at 25.78125 Gbps each. This results in
an aggregate uni-directional physical layer (PHY) raw data rate of 103.125 Gbps;
however, after accounting for the 64b/66b encoding overhead, the effective pay-
load data rate is approximately 100 Gbps. Data from the four lanes is aggregated
into 512-bit wide words that are processed at a clock frequency of 322 MHz, the
same frequency at which the CAUI-4 interface serializes and deserializes data.
By converting high-speed serial data into these wider parallel words, the CMAC
core is able to manage bursty traffic more effectively. It achieves this by buffering
the data and inserting idle cycles or employing flow control, ensuring that while
its instantaneous processing capability might be higher, the average throughput
is maintained at the PHY’s 100 Gbps limit.

The CMAC kernel offers two 512-bit AXI4-Stream interfaces to connect with
FLARE. The setup, shown in Figure 7, connects FLARE to the network via

10 A. Sateesan et al.

QSFP and communicates with the host computer through PCI Express. FLARE
is interfaced with another AXI4-Stream IP, Swap kernel, to verify FLARE’s func-
tionality by echoing traffic by swapping source and destination addresses. The
system architecture of FLARE is as depicted in Figure 2. The incoming 512-bit
AXI Stream data is buffered for four cycles to accommodate the blacklist query
data path processing delay, which includes parsing, filtering, and blacklist query.
The detection framework, containing the LOFT algorithm and CMI, processes
the parsed data, with aggregator facilitating communication between the black-
list and detection components. For the details of LOFT, we refer to the original
work [5]. In the implementation, LOFT uses 16,384 24-bit counters (16 bits for
flow volume, 8 bits for cardinality), assuming that there are no jumbo frames.
The size of the flow ID, consisting of the source address and port, is 48 bits. The
active flow list and flow table in LOFT are implemented using the Cuckoo hash
table, and both have a depth of 16384.

The blacklist, implemented with dual-port block RAM (BRAM) and con-
trolled by two FSMs, handles simultaneous query and configure operations with
a query latency of 2 cycles, ensuring processing at line rate. The sketch module
of the blacklist has two arrays (d=2, m=1024) and the fingerprint size is 8 bits,
adequate to provide near-hundred percent accuracy for storing up to 1024 ele-
ments (address size of 10-bits). An 8-bit fingerprint is optimal for SPArch [18],
though even a 6-bit fingerprint is sufficient to reach saturation in accuracy. The
update operation of the blacklist is not pipelined to conserve resources as well
as to improve the operating frequency. As the update operation occurs less fre-
quently, the aggregator can store and queue multiple update requests, making
the pipelining of the update operation unnecessary.

4.3 Results

The overall resource consumption of the testbed including the static shell region
is summarized in Table 1, detailing the resource usage of various modules. Al-
though the logic resource usage of the testbed is negligible compared to the total
available resources, it consumes 32% of the BRAMs. Of this, 20% is allocated to
LOFT, while 10% is consumed by the memory subsystem and interconnects. The
memory requirement of LOFT, ∼97% of the memory consumption of FLARE, is
primarily driven by its measurement module. This underscores the importance
of optimizing the algorithm and designing the measurement module to be shared
across multiple algorithms so that the memory footprint stays within the con-
straints of on-chip resources. FLARE requires only <1% of the logic resources
and on-chip memory, excluding the detection algorithms.

FLARE has 4 pipeline stages and introduces a total propagation delay of four
clock cycles per packet, covering the operations of parsing, filtering, and blacklist
lookup to determine whether to forward or drop a packet. The detection frame-
work operates independently and does not interfere with the packet-forwarding
operations. The CMAC core can transmit and receive 512 bits per clock cycle
at an operating frequency of 322 MHz. Assuming a minimum packet size of 64

FLARE: An FPGA-Based Universal Large Flow Detection Engine 11

bytes, FLARE can process one packet per clock cycle. When metadata is in-
cluded, an additional clock cycle is required to transmit or receive a 64-byte
packet, resulting in a total of two clock cycles for processing. This additional cy-
cle provides enough slack time for FLARE during processing. FLARE supports
bidirectional data rates up to 200Gbps, which is the maximum throughput the
network interface can support (cf. 4.2). The throughput of packet forwarding
remains unaffected by the throughput of detection algorithms, as the detection
framework operates independently in parallel. With a network interface that can
support higher data rates, FLARE can sustain the required throughput as long
as the critical path delay remains sufficient. The detection framework in the PoC
implementation can achieve a throughput of 400 million packets per second as-
suming minimum packet size, consistent with the performance of LOFT. For a
detailed discussion of the experimental results of LOFT, we refer to the original
work [5].

4.4 Existing Works and Comparison

Exploration of FPGA-based solutions for large flow detection remains limited,
with even fewer studies available in integrating DDoS defence algorithms [23,24].
Moreover, most existing solutions are designed for Gbps link speeds, making
them unsuitable for Terabit Ethernet environments. Scalability challenges in in-
tegrating multiple detection units on hardware further contribute to the under-
exploration of this research area. The work proposed in [24] incorporates mul-
tiple detection techniques for DDoS defense, employing an approach analogous
to FLARE. However, their approach targets Gigabit networks and employs fil-
tering techniques rather than independent detection algorithms, making it less
suitable for algorithms with variable measurement epochs. Similarly, commercial
solutions like Intel’s Algo-shield [25] act as an accelerated filtering mechanism
that integrates only established defense methods, limiting their adaptability.

Approaches using generic sketches, such as Jaquen [26], Poseidon [27], Uni-
vMon [1], LUS [7], and generalized families of sketches [28], are limited to de-
tecting high-bandwidth flows due to the high overestimation of sketches. These
approaches also suffer from high latency and computational complexity [7], hin-
dering their applicability in high-speed environments. Collaborative DDoS de-
fense frameworks like SENSS [29], DefCOM [30], and CoDef [31] enable resource
sharing across organizations and networks but introduce coordination complex-

Table 1: FPGA resource utilization.
Design LUTs Registers CLB BRAM DSP
Testbed* 166,646 (9.6%) 270,704 (7.9%) 46,207 (21.4%) 860 (32.0%) 9 (0.1%)

FLARE 21,006 (1.2%) 11,761 (0.3%) 6,212 (2.9%) 547 (20.3%) 0 (0.0%)
Blacklist 1,031 (0.1%) 107 (0.0%) 178 (0.1%) 2 (0.1%) 0 (0.0%)
LOFT 18,341 (1.1%) 9,937 (0.3%) 5,717 (2.6%) 533 (19.8%) 0 (0.0%)

CMAC 9,126 (0.5%) 32,051 (0.9%) 5,838 (2.7%) 17 (0.6%) 0 (0.0%)
Swap kernel 686 (0.0%) 802 (0.0%) 253 (0.1%) 17 (0.6%) 0 (0.0%)

*Including static shell region.

12 A. Sateesan et al.

ity and potential privacy risks. These solutions predominantly support Gbps
networks, often neglecting algorithmic optimization crucial for low-overhead de-
tection at Tbps speeds.

Recent advancements in FPGA-based data center accelerators, such as Alveo,
showed promising trends toward Terabit Ethernet. Recent works on FPGA-based
data center accelerators to accelerate workloads show promise [15, 32, 33], but
their applications to network security and large flow detection remain under-
explored. Data center accelerator card-based smart NICs [34, 35] and 100Gbps
network stacks [22, 36] primarily target data analytics, machine learning, and
cryptography [37–40]. Nevertheless, these architectures offer valuable insights
and can be adapted for large flow detection, significantly reducing design time.
Advantages of FLARE: Compared to the existing solutions, FLARE offers
several advantages and those are listed here:
Reduced detection overhead and real-time monitoring: FLARE reduces the de-
tection overhead by sharing a blacklist that operates independently of the de-
tection algorithms. Additionally, it supports sharing flow measurement modules
among algorithms with similar measurement criteria, which can further reduce
overhead. Since the algorithms and packet forwarding mechanism operate in-
dependently in parallel, their complexity does not affect throughput, enabling
real-time processing at Tbps link speeds.
Enhanced coordination and communication: TTLT functionality enables eas-
ier coordination of individual detection algorithms with different measurement
epochs, improving overall efficiency.
Scalability: FLARE can easily accommodate emerging attack detection algo-
rithms without interfering blacklist lookups or packet forwarding throughput,
ensuring scalability.
Privacy-preserving: Unlike collaborative defense frameworks, which share re-
sources and data externally, FLARE confines resource sharing internally, ad-
dressing privacy concerns.
Robust fault prevention: Compromised detection units (brain) can be isolated
and disconnected from the framework in a plug-and-play manner, maintaining
robustness and operational integrity.

5 Conclusions

This paper proposed FLARE, an FPGA-based large flow detection engine tar-
geting Terabit Ethernet capable of integrating multiple detection algorithms into
a unified framework while sharing a common blacklist. We tested the functional-
ity of FLARE on an ALveo U250 data center accelerator card using high-speed
network interfaces, supporting bidirectional data rates up to 200 Gbps. The
implementation validates its real-time flow monitoring capabilities and adapt-
ability for high-speed network security applications. Future work will expand its
algorithmic repertoire, focusing on shared measurement modules, and explore
broader real-world deployments, solidifying its role in next-generation network
security.

FLARE: An FPGA-Based Universal Large Flow Detection Engine 13

Acknowledgments

This work is supported by the ESCALATE project, funded by FWO (G0E0719N)
and SNSF (200021L_182005), and by Cybersecurity Research Flanders (VR20192203).

References

1. Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One sketch to
rule them all: Rethinking network flow monitoring with UnivMon. Proc. ACM
Special Interest Group Data Commun. (SIGCOMM), pages 101–114, 2016.

2. T. Yang et al. Elastic sketch: Adaptive and fast network-wide measurements. Proc.
ACM Special Interest Group Data Commun. (SIGCOMM), pages 561–575, 2018.

3. L. Tang, Q. Huang, and P. P. C. Lee. A fast and compact invertible sketch
for network-wide heavy flow detection. IEEE/ACM Transactions on Networking,
28(5):2350–2363, 2020.

4. Hao Wu, Hsu-Chun Hsiao, and Yih-Chun Hu. Efficient large flow detection over
arbitrary windows: An algorithm exact outside an ambiguity region. In Proceedings
of the 2014 Conference on Internet Measurement Conference, pages 209–222, 2014.

5. Simon Scherrer, Che-Yu Wu, Yu-Hsi Chiang, Benjamin Rothenberger, Daniele E
Asoni, Arish Sateesan, Jo Vliegen, Nele Mentens, Hsu-Chun Hsiao, and Adrian
Perrig. Low-rate overuse flow tracer (loft): An efficient and scalable algorithm
for detecting overuse flows. In 2021 40th International Symposium on Reliable
Distributed Systems (SRDS), pages 265–276. IEEE, 2021.

6. Simon Scherrer, Che-Yu Wu, Yu-Hsi Chiang, Benjamin Rothenberger, Daniele E
Asoni, Arish Sateesan, Jo Vliegen, Nele Mentens, Hsu-Chun Hsiao, and Adrian
Perrig. Albus: a probabilistic monitoring algorithm to counter burst-flood attacks.
In 2023 42th International Symposium on Reliable Distributed Systems (SRDS).
IEEE, 2023.

7. Qingjun Xiao, Xuyuan Cai, Yifei Qin, Zhiying Tang, Shigang Chen, and Yu Liu.
Universal and accurate sketch for estimating heavy hitters and moments in data
streams. IEEE/ACM Transactions on Networking, 2023.

8. Carpet Bomb DDoS Attacks: On the Rise and Evading Detection. https://www.
corero.com/threat-report-carpet-bomb-intro/, 2023.

9. T. Yang, L. Liu, Y. Yan, M. Shahzad, Y. Shen, X. Li, B. Cui, and G. Xie. Sf-sketch:
A fast, accurate, and memory efficient data structure to store frequencies of data
items. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE),
pages 103–106, 2017.

10. G. Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

11. Joost Hoozemans, Johan Peltenburg, Fabian Nonnemacher, Akos Hadnagy, Zaid
Al-Ars, and H Peter Hofstee. Fpga acceleration for big data analytics: Challenges
and opportunities. IEEE Circuits and Systems Magazine, 21(2):30–47, 2021.

12. Yao Fu. Adaptable Machine Learning with Alveo Data Center Acceleration Cards.
https://www.xilinx.com/publications/events/machine-learning-live/
colorado/AdaptableMachineLearning_with_Alveo.pdf, 2018.

13. Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, et al. Serving dnns in real time at datacenter scale with project brainwave.
iEEE Micro, 38(2):8–20, 2018.

14 A. Sateesan et al.

14. Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. A reconfigurable fabric for accelerating large-scale data-
center services. ACM SIGARCH Computer Architecture News, 42(3):13–24, 2014.

15. Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkers-
dorf. Enabling FPGAs in hyperscale data centers. In 2015 IEEE 12th Intl Conf
on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Au-
tonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
pages 1078–1086. IEEE, 2015.

16. Jagath Weerasinghe, Raphael Polig, Francois Abel, and Christoph Hagleitner.
Network-attached FPGAs for data center applications. In 2016 International Con-
ference on Field-Programmable Technology (FPT), pages 36–43. IEEE, 2016.

17. Mohamed Hassan. On the off-chip memory latency of real-time systems: Is ddr
dram really the best option? In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 495–505. IEEE, 2018.

18. Arish Sateesan, Jo Vliegen, Simon Scherrer, Hsu-Chun Hsiao, Adrian Perrig, and
Nele Mentens. SPArch: A hardware-oriented sketch-based architecture for high-
speed network flow measurements. ACM Transactions on Privacy and Security,
2024.

19. Arish Sateesan, Jo Vliegen, Joan Daemen, and Nele Mentens. Hardware-oriented
optimization of bloom filter algorithms and architectures for ultra-high-speed
lookups in network applications. Microprocessors and Microsystems, 93:104619,
2022.

20. Xilinx. Alveo U250 Data Center Accelerator Card. https://www.xilinx.com/
products/boards-and-kits/alveo/u250.html, 2023.

21. Xilinx. Vitis unified software platform documentation: Application acceleration
development (ug1393). https://docs.xilinx.com/r/en-US/ug1393-vitis-application-
acceleration, 2023.

22. Xilinx. XUP Vitis Network Example (VNx). https://github.com/Xilinx/xup_
vitis_network_example.

23. Yu Chen and Kai Hwang. Collaborative detection and filtering of shrew ddos
attacks using spectral analysis. Journal of Parallel and Distributed Computing,
66(9):1137–1151, 2006.

24. Cuong Pham-Quoc, Biet Nguyen, and Tran Ngoc Thinh. Fpga-based multicore
architecture for integrating multiple ddos defense mechanisms. ACM SIGARCH
Computer Architecture News, 44(4):14–19, 2017.

25. Stop DDoS Attacks before They Disrupt the Customer Experience. https://
intel.ly/2N9hexa, 2020.

26. Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim,
Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. Jaqen: A {High-
Performance}{Switch-Native} approach for detecting and mitigating volumetric
{DDoS} attacks with programmable switches. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 3829–3846, 2021.

27. Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin Hu,
Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu. Poseidon: Mitigating
volumetric ddos attacks with programmable switches. In the 27th Network and
Distributed System Security Symposium (NDSS 2020), 2020.

28. You Zhou, Youlin Zhang, Chaoyi Ma, Shigang Chen, and Olufemi O Odegbile.
Generalized sketch families for network traffic measurement. Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 3(3):1–34, 2019.

FLARE: An FPGA-Based Universal Large Flow Detection Engine 15

29. Sivaramakrishnan Ramanathan, Jelena Mirkovic, Minlan Yu, and Ying Zhang.
Senss against volumetric ddos attacks. In Proceedings of the 34th Annual Computer
Security Applications Conference, pages 266–277, 2018.

30. George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robinson. A frame-
work for a collaborative ddos defense. In 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 33–42. IEEE, 2006.

31. Soo Bum Lee, Min Suk Kang, and Virgil D Gligor. Codef: Collaborative defense
against large-scale link-flooding attacks. In Proceedings of the ninth ACM confer-
ence on Emerging networking experiments and technologies, pages 417–428, 2013.

32. Babak Falsafi, Bill Dally, Desh Singh, Derek Chiou, J Yi Joshua, and Resit Sendag.
FPGAs versus GPUs in data centers. IEEE Micro, 37(1):60–72, 2017.

33. Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif
Tarafdar, Juan Camilo Vega, Ken Eguro, Dirk Koch, Suranga Handagala, Miriam
Leeser, et al. The future of fpga acceleration in datacenters and the cloud. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 15(3):1–42,
2022.

34. Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo Alonso. {FpgaNIC}:
An {FPGA-based} versatile 100gb {SmartNIC} for {GPUs}. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages 967–986, 2022.

35. AMD. AMD OpenNIC project. https://github.com/Xilinx/open-nic/blob/
main/OpenNIC_manual.pdf. Accessed: 2024.

36. Zhenhao He, Dario Korolija, and Gustavo Alonso. Easynet: 100 gbps network
for hls. In 2021 31st International Conference on Field-Programmable Logic and
Applications (FPL), pages 197–203. IEEE, 2021.

37. Monica Chiosa, Thomas B Preußer, and Gustavo Alonso. Skt: A one-pass
multi-sketch data analytics accelerator. Proceedings of the VLDB Endowment,
14(11):2369–2382, 2021.

38. Wenqi Jiang, Dario Korolija, and Gustavo Alonso. Data processing with FPGAs
on modern architectures. In Companion of the 2023 International Conference on
Management of Data, pages 77–82, 2023.

39. Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng, Liang Feng, Jiansong Zhang,
Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, et al. Fleetrec: Large-scale
recommendation inference on hybrid gpu-fpga clusters. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 3097–
3105, 2021.

40. Lucas Bex, Furkan Turan, Michiel Van Beirendonck, and Ingrid Verbauwhede.
Mining cryptonight-haven on the varium c1100 blockchain accelerator card. arXiv
preprint arXiv:2212.05033, 2022.

