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Abstract—Environment awareness can be highly beneficial
for robust and agile beam prediction, particularly for beyond-
5G millimeter-wave (mm-wave) networks. While machine learn-
ing (ML) algorithms have shown potential in leveraging external
sensor data, such as LiDAR, radar, and cameras, to enhance
beam prediction, existing solutions often rely on simulations
or offline data processing, limiting their applicability in real-
world mm-wave deployments. Real-world deployment of such
solutions requires low-latency ML inference tailored to resource-
constrained hardware platforms but remains challenging due
to the computational complexity and latency demands of ML
models. This paper addresses these challenges by implementing
real-time ML inference in hardware focusing on environment
awareness using LiDAR data. We present an FPGA-based imple-
mentation of Quantized Neural Networks (QNNs) optimized for
real-time LiDAR-aided beam prediction in beyond-5G mmWave
networks. Evaluations on the ZCU104 FPGA platform using
real-world datasets demonstrate inference latencies in the tens
to hundreds of microseconds, achieving comparable accuracy to
state-of-the-art methods with only 2-bit weights and activations.
Our results underline the effectiveness of the QNNs in achieving
high accuracy, low latency, and hardware resource efficiency for
real-world mmWave applications.

I. INTRODUCTION

Millimeter-wave (mm-wave) bands offer wide channels sup-
porting high data rates and low latency, making them attractive
for next-generation wireless communications. However, mm-
wave signals face significant challenges like susceptibility to
blockage, high propagation losses, and highly site-specific
coverage. The use of directional beams with high beamforming
gain can counteract these challenges but requires efficient
and complex dynamic beam management to maintain stable
connectivity under mobility, especially in dense urban envi-
ronments. Traditional beam selection techniques, such as the
exhaustive search beam sweep employed in standards like
IEEE 802.11ad and 5G-NR, suffer from resource and time
overheads, limiting their real-time performance. For instance,
5G-NR employs exhaustive beam search with synchronization
signal (SS) bursts of 5 ms, repeating every 20 ms, resulting in
beamforming delays of 300–900 ms [1].

In the context of directional mm-wave networks, effective
beam management directly depends on environmental factors
such as base station (BS)/user equipment (UE) positions
relative to the geometry of the urban building layout and
moving obstacles such as cars or pedestrians that may block or
reflect the mm-wave signal. Explicit environment awareness
is thus valuable for achieving robust, flexible, and efficient

radio resource management (RRM) for beyond-5G networks.
Machine learning (ML) techniques have shown significant
potential in enhancing beam prediction and beamforming by
leveraging real-time and historical environmental data from
non-RF sensors such as LiDAR (Light Detection and Rang-
ing), GPS (Global Positioning System), and cameras [2]–
[4]. The predictive capability of ML algorithms enables real-
time perception of the surrounding environment. This data-
driven approach reduces system complexity and beam training
overhead while greatly reducing direct radio measurement
signalling overhead by utilizing side information from envi-
ronmental sensing [5].

Despite the advances in ML-based environment awareness,
most studies demonstrate performance primarily through sim-
ulations using synthetic data or offline processing of real-
world measurements. Deploying ML techniques in real-world
beyond-5G networks requires low-latency, real-time inference
on hardware, which is often challenged by the computational
complexity, latency sensitivity, and energy constraints inher-
ent in mobile network systems. Our work addresses these
challenges by targeting efficient real-time QNN inference for
environment-aware beam prediction in beyond-5G networks.
Beam prediction in mm-wave networks: Recent research has
explored combining ML with out-of-band beam prediction
approaches [6] using non-RF sensors such as cameras [7], Li-
DAR [8]–[10], and multi-modal non-RF sensing [3]. LiDAR,
in particular, offers better depth perception and object local-
ization than cameras and superior spatial resolution compared
to radar, making it highly suitable for environment mapping.
Multi-modal approaches enhance accuracy, but with increased
computational and hardware demands. Existing LiDAR-based
studies have addressed the scenarios in both outdoor [2], [8],
[9] and indoor beam prediction [10]–[12]. However, most
of the existing, limited, LiDAR-based approaches for beam
prediction are evaluated with simulated datasets [11], [12]
or offline post-processing of measurement data [2], [3], with
limited hardware implementation, making it difficult to assess
their real-world efficiency and real-time performance.
Quantized Neural Networks: In practical cellular networks,
both the BS and especially the UE typically have memory
and computational constraints, demanding efficient processing
solutions. Quantization techniques in neural networks address
these challenges by reducing the computational and mem-
ory requirements [13]. Binarized Neural Networks (BNNs),



for instance, constrain weights and activations to {-1, 1},
thereby minimizing memory and computational requirements
with minimal accuracy trade-offs [14]. Even low-bit-width
quantization reduces computational demands while preserving
accuracy [15]. Lower bit-width representations enable models
to fit on fast, on-chip memory, reducing off-chip memory
accesses and power consumption.

In this paper, we bridge the gap between theoretical
advancements in ML-based beam prediction and practical
implementation by focusing on real-time ML inference for
environment awareness in mm-wave networks. We present an
efficient FPGA-based implementation of QNNs, leveraging
low-bit-width models optimized for real-time beam prediction.
We note that, although GPUs generally excel in ML tasks,
their high power consumption and dependence on auxiliary
components limit their applicability. In contrast, FPGAs are
energy-efficient and standalone, making them ideal for deploy-
ing ML algorithms in resource-constrained environments [16].
Moreover, existing next-generation WiFi and beyond-5G ex-
perimental testbeds are based on RFSoC FPGAs [17] and
FPGA-SDR platforms [18], enabling seamless integration of
FPGA-based implementation of QNNs into wireless state-of-
the-art experimental platforms.

To tackle the challenges in emerging ML-based environment
awareness for beyond-5G networks, we propose a LiDAR-
based beam prediction model using QNN, trained on real-
world datasets. Our model achieves a Top-1 accuracy of
85% on the FLASH [19] dataset, surpassing the full-precision
model with a 2.6× reduction in model size. We also analyze
the effects of quantization on accuracy by varying the spatial
characteristics of the datasets. We deploy the QNN model on
the Zynq Ultrascale+ ZCU104 FPGA using the Xilinx FINN
framework [13], which achieves inference speeds 100-1000
times faster than the data capture rate of LiDAR, showing
its applicability in real-time, real-world scenarios. Our results
show that combining FPGAs with QNNs lowers computational
and memory demands while maintaining predictive accuracy.

II. LIDAR AND ML-BASED BEAM PREDICTION

We propose and implement an ML-based beam prediction
model on FPGA leveraging LiDAR data for environment
awareness to predict the optimal beam in mm-wave networks.
The subsequent sections detail the input data preprocessing,
model architecture, and the system model.

A. System Model for ML-based Beam Prediction

The system model for the ML-based beam prediction is
shown in Fig. 1. It consists of a LiDAR preprocessing module
and QNN, where QNN performs the feature extraction and
classification. The input to the beam prediction model is the
LiDAR point cloud P . Based on this input, the model predicts
the best beam bo ∈ B at the BS, where B = {b1, b2, ..., bM} is
the set of all possible beams, with M denoting the total number
of beams. Each beam bj has a specific RSS value, where
j ∈ {1, 2, . . . ,M}, and the optimal beam b∗ is the one with the
maximum RSS value. In the ideal scenario, the predicted beam
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Fig. 1. System model for ML-based beam prediction.

bo is the optimal beam b∗. Each beam bj also corresponds to a
specific antenna beam steering direction and respective cover-
age area. The preprocessing module converts the LiDAR point
cloud into a feature map, represented as a grid G ∈ RH×W×D,
as elaborated in Section II-B. We use our proposed SVQNN
model (cf. Section II-C) for feature extraction, represented as
fθ,Q, configured for quantized operations, with parameters θ.
The SVQNN processes the quantized LiDAR feature map G
to generate a quantized feature vector Q(r) ∈ Rd

2k , where
d is the feature vector size and k is the quantization bit-
width if the grid r is populated on value-based method and is
quantized to k-bit integer values. For an occupancy-based grid
(cf. Section II-B), the value of k is 1. The quantized feature
vector is expressed as:

Q(r) = fθ,Q(G)

Here, all weights, activations, and outputs in fθ,Q are quan-
tized. The quantized feature vector Q(z) is input to a quantized
classifier (dense layer), hϕ,Q, with parameters ϕ. The predicted
optimal beam bo is selected using the classifier, as it outputs a
quantized probability distribution over the M beams. During
training, cross-entropy loss is used between the predicted
quantized beam probabilities hϕ,Q(Q(z)) and the true beam
label. The predicted beam is determined as:

bo = argmax
bj∈B

hϕ,Q(Q(r))[j]

We evaluate the system model based on the Top-k accuracy
metric. It measures the proportion of instances where the
optimal beam b∗ is among the top k predicted beams.

B. LiDAR Data & Preprocessing

The LiDAR sensor generates a spatial point cloud, P =

{(xi, yi, zi)}|N |
i=1, where (xi, yi, zi) are the 3D coordinates of

the ith point mapping to the detected object points around
the sensor and N is the total number of points. Given the
complexity of these point clouds, preprocessing is essential
to reduce data dimensionality and noise, ensuring structuring
and scaling of relevant features are suitable for the deep
learning model. The point cloud is transformed into either
a 3D voxel or a 2D pixel grid, denoted by G. A voxel
grid is represented as G ∈ RH×W×D and a pixel grid is
represented as G ∈ RH×W , where H and W represents
the 2D spatial plane and D represents the number of layers.
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Fig. 2. LiDAR data preprocessing.



A voxel grid represents spatial information, dividing space
into discrete units called voxels, while a pixel grid is its 2D
counterpart. Grids are generated either by occupancy or value-
based methods. An occupancy grid is populated with binary
values and is marked as ’1’ (occupied) if it contains any data
points, while value-based grids aggregate and quantize data
points. In this paper, we use two datasets, DeepSense [20] and
FLASH [19]. The FLASH dataset is preprocessed into a 3D
occupancy voxel grid, while DeepSense data is transformed
into a 2D pixel grid, based on either occupancy or value-based
methods, as shown in Fig. 2. The details of these datasets are
elaborated in Section III-A.

C. Deep Learning Model

The neural network model we adopt is a quantized adapta-
tion of multi-view convolutional neural network (MVCNN),
originally designed for 3D shape recognition [21]. The
MVCNN architecture, illustrated in Fig. 3(a), comprises multi-
ple view-CNNs for feature extraction from individual sensors,
a view pooling layer for feature aggregation, and a final
CNN for classification. Each view-CNN includes three 2D
convolutional layers with a kernel size of 3 × 3, followed
by a fully connected (FC) layer. In this work, we modified
the model to adapt to using only a single view with LiDAR
as the descriptor. The MVCNN framework can also integrate
multi-sensor data (e.g. camera views) for multi-modal sensing.
Since we only use one view, we omit the view pooling and
concatenation and replace the final CNN with an FC layer
with 64 output channels as classifier, followed by quantization
of layers. Each quantized convolutional layer is followed by
batch normalization, quantized max-pooling (kernel size 2×2,
stride 2), and a quantized ReLU/HardTanh activation. The
quantized model for a single descriptor is called single-view
QNN (SVQNN), and is shown in Fig. 3(b). The input to the
model is the LiDAR voxel or pixel grid, where the depth of
the grid D serves as the input channel dimension for the first
2D convolution layer.

D. Training & Inference on FPGA

Training: We use quantization-aware training (QAT) to train
the neural network, a technique that simulates the effects
of reduced numerical precision during the training process.
Unlike post-training quantization, which applies quantization
to trained parameters after the model is fully trained, QAT
allows the model to learn to adapt to quantization effects,
such as reduced precision in weights and activations, while
being trained. This approach helps mitigate any potential
loss in accuracy. The input to the model, a voxel/pixel grid
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Fig. 3. Multi-View CNN and SVQNN models.

of a LiDAR point cloud, tends to be sparse, with each
value carrying critical information. Applying binarization to
such a sparse input risks loss in information and accuracy.
This prompts us to employ quantized weights and activations
instead of pure binarization during training. The model is
trained with Brevitas [22], a library designed for QAT, built
on top of PyTorch. In Brevitas, fake quantization layers (e.g.,
convolution, max-pooling, ReLU, HardTanh) are applied dur-
ing training to simulate quantization effects. These layers
apply quantization only during forward passes in training and
retain higher precision weights in the model graph. During
inference, weights, activations, and outputs are quantized to
their specified bit-widths, ensuring consistent performance in
a quantized environment.
Inference on FPGA: We employ the Xilinx FINN-R frame-
work [13] to map the trained model to hardware. The hardware
architecture of each layer in the FINN-based QNN inference
model is shown in Fig. 4. The fundamental computational
components of the hardware architecture are the matrix-vector
threshold unit (MVU) and the sliding window unit (SWU).
An array of parallel processing elements (PE) with each
PE performing parallel computations based on the number
of single-instruction-multiple-data (SIMD) lanes forms the
MVU. The number of PEs and SIMD lanes determines the
computational parallelism of the hardware architecture. The
PE is responsible for multiplication, accumulation, and thresh-
old comparison operations in convolutional and FC layers.
Both convolution and max pooling layers employ the sliding
window unit (SWU) to organise input data into overlapping or
non-overlapping patches, enabling the MVU to execute matrix-
matrix multiplications and comparison operations for convo-
lution and pooling operations, respectively. FINN has limited
support for non-linear activations like Tanh and Sigmoid,
as it is optimized for linear functions or simpler threshold-
based activations such as ReLU or HardTanh. Thus, we
adopt the quantized HardTanh activation with the value range
{−1,+1} as the activation function for approximating non-
linear behaviour. HardTanh works well with low-bit activations
due to its bounded output range and is hardware-friendly for
binarized parameters, compared to ReLU [23].

III. PERFORMANCE EVALUATION

A. Experimental Setup

Dataset: Training a neural network for environment-aware
beam prediction requires a dataset that features the envi-
ronmental conditions relevant to beamforming, such as user
location, channel state information in terms of RSS per beam,
mobility patterns, and obstacles that affect signal propagation.
We use two real-world datasets, DeepSense [20] (scenario 8)
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and FLASH [19], to train and evaluate the proposed beam
prediction model. In the FLASH data collection setup, the
moving UE is equipped with LiDAR and GPS connected to
an onboard computer, with data capture rates of 10 Hz for
LiDAR and 1-1.5 Hz for RSS beam sweep measurements.
IEEE 802.11ad Wi-Fi radios, equipped with antenna arrays
operating at a 60 GHz1frequency, are used as both BS and
UE, with the UE being omnidirectional. The default codebook
includes 34 defined sectors (M=34), sector IDs 1-31 and
61-63, while IDs 32-60 remain undefined. In the DeepSense
setup, the BS features a LiDAR, GPS receiver, and 16-element
phased array receiver. The moving UE has GPS and mm-
wave omni-directional transmitter. Both BS and UE operate
at 60 GHz. The signal is transmitted using a codebook of 64
pre-defined beams (M=64). The data capture rate of LiDAR
is 10 Hz and of the RSS beam sweep measurements is 8-9
Hz. The collected LiDAR, GPS, and RF data are synchro-
nized during preprocessing. FLASH and DeepSense datasets
contains ∼32K and ∼4K samples, respectively. The dataset
is split into 80% for training, and 10% each for validation
and testing. Notably, the FLASH dataset contains 3D LiDAR
point clouds, while the DeepSense dataset provides 2D LiDAR
measurements, making them distinct in dimensionality and
information richness. Each dataset is labelled with the optimal
beam index b∗ based on the received signal strength (RSS).

Hardware platform: Our work aims towards the integration
of ML-aided beam prediction into FPGA and SDR-based
experimental platforms and testbeds [17], [18]. For wireless
network applications, the preferred FPGA platforms are RF-
SoC FPGAs, such as the Zynq Ultrascale+ ZCU208 evaluation
platform [24]. However, since FINN does not directly support
deploying neural networks into RFSoC FPGAs, we manually
integrate the hardware-mapped QNN generated on a FINN-
supported platform into the RFSoC programmable logic. We
choose the FINN-supported Zynq UltraScale+ ZCU104 MP-
SoC (xczu7ev-ffvc1156-2-e) evaluation board [25] for this
work due to its architectural similarity with Zynq UltraScale+
RFSoC devices. The QNN is mapped to this platform gen-
erating a hardware IP (stitched IP), that integrates into the
ZCU208 RFSoC via AXI stream FIFO interfaces.
Input and output: For the FLASH dataset, the LiDAR point
clouds are preprocessed into an occupancy voxel grid of size
(20 × 20 × 20). For the DeepSense dataset, the 2D LiDAR
data is transformed into an occupancy or value-based pixel
grid of size (20× 20). These representations serve as inputs,
with only the input channels of the first convolutional layer
of the QNN differ between the datasets. The model outputs a
single predicted beam index from the M available classes.

B. Architectural Exploration

For evaluation, we analyze two variations of the
SVQNN (cf. Section II-C), namely SVQNNS and SVQNNL,
which differ in the number of channels per layer. SVQNNS

1We note that we use these mm-wave datasets at 60 GHz without loss of
generality due to the lack of datasets at 28 GHz corresponding to 5G and
beyond FR2 deployments.

is the standard model with 128 channels in the convolution
layers and 512 channels in the FC layer. SVQNNL is the
lightweight version with reduced hardware requirements by
scaling down the number of channels in each layer, featuring
16 channels in the convolution layers and 128 channels in
the FC layer. For weights and activation bit-widths ≤2, the
activation function used is HardTanh. Both networks are
trained with quantized weights and activations, with bit-widths
varied between w ∈ {2, 8} for weights and a ∈ {1, 8} for
activations to assess performance under quantization. Training
spans 75 epochs using the cross-entropy loss function, the
ADAM optimizer, and a learning rate of 0.001. The out-
of-context synthesis on hardware is performed for a target
clock frequency of 100 MHz. The effects of parallelization on
hardware resource usage, throughput, and latency are evaluated
by varying folding parameters such as the number of PEs,
SIMD lanes, and MVU width. The MVU width determines
the degree of parallelism in vector operations, defined by the
number of PEs, SIMD lanes, and multi-vector parallelization.
Folding reduces the parallelism by distributing computations
over multiple clock cycles, enabling neural network models to
fit within FPGA resource constraints. In FINN, folding can be
automated by adjusting the MVU width or manually tuned by
modifying PE and SIMD values for each layer.

C. Results

We present the results evaluating the proposed model using
the DeepSense and FLASH datasets, focusing on key metrics,
including accuracy, resource usage, and latency.
Accuracy and the impact of dataset characteristics: We
evaluate the effect of quantization on accuracy by varying w
and a bit-widths, using Top-k beam prediction accuracy as
the primary metric. Fig. 5 shows the accuracy vs. {w, a} bit-
width configurations for the DeepSense and FLASH datasets
with different input quantizations and SVQNN configurations.
Fig. 5(a) shows that the DeepSense dataset exhibits minimal
sensitivity to different QNN models and varying quantization
values, while the FLASH dataset, as shown in Fig. 5(b), shows
greater dependence to the QNN variations. This is due to
the differences in size, dimensionality, and complexity of the
datasets: the FLASH dataset, with a large sample size and 3D
LiDAR data, contains richer spatial information and higher
redundancy, while the DeepSense dataset has lower complexity
and fewer features, which may lead to overfitting, thereby
masking the effects of quantization. This difference highlights
the greater sensitivity of the FLASH dataset to quantization
errors compared to the simpler DeepSense dataset.

To further analyze the impact of dataset characteristics, we
tested the models on the quantized version of the DeepSense
dataset and the category-1 (Cat-1) sub-dataset of FLASH. The
Cat-1 FLASH dataset includes line-of-sight (LOS) passing
scenario and has a sample size of ∼9.7K. The quantized
DeepSense dataset, containing 16-bit quantized data points,
carries more detailed information and is more sensitive to
quantization compared to its occupancy-based counterpart as
evident from Figs. 5(a) and 5(c), respectively. The Cat-1
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Fig. 5. Top-k beam prediction vs. weight and activation bit-widths for the SVQNNS and SVQNNL models and different datasets.

FLASH dataset remains highly sensitive to quantization due to
its data complexity as shown in Fig. 5(d), but with a significant
reduction in accuracy due to the reduced sample size compared
to the full FLASH dataset in Fig. 5 (b).

Table I compares the Top-1 accuracy, number of parameters,
and inference latency as measured in our FPGA implemen-
tation across SVQNN models and benchmarks like Omni-
CNN [3] and Jiang et al. [2]. The results of SVQNN models
are generated with an MVU width of 32 for the DeepSense
dataset, and MVU widths of 128 and 32 for SVQNNL and
SVQNNS , respectively, on the FLASH dataset. Although a
direct comparison with the existing models from the literature
is not possible as the implementation platform and the CNN
models differ, Table I shows that our quantized SVQNN
versions demonstrate comparable accuracy to the existing full-
precision models for LiDAR-based beam prediction while
achieving a significantly smaller memory footprint and excel-
lent inference latency of tens to hundreds of microseconds. The
SVQNNL model for the DeepSense dataset has ∼29× smaller
model size and ∼49× lower inference latency than [2], with
only 0.14× loss in accuracy. SVQNNS attains top-3 accuracies
of 79% with only 2-bit weights and 1-bit activations, and 97%
with 2-bit weights and activations on the FLASH dataset. It
also achieves a top-1 accuracy of 85.43% with 2-bit weights
and activations, outperforming Omni-CNN in accuracy while
maintaining a smaller model size, but with increased inference
latency. For reference, Omni-CNN is reported in [3] to achieve
0.008 ms latency, but presumably on a GPU. We note that the
BS and UE radio sweeping delay of 5 ms and 20 ms for a
single beam in 5G-NR [1], a beam prediction inference latency
of under 1 ms likely meets system-level latency requirements.
Importantly, our SVQNN models on FPGA offer better trade-
offs in latency, energy efficiency, and resource utilization in
contrast to GPU-based implementations which have lower
energy efficiency and limited customizability.
Resource usage, latency, and throughput: The synthesis re-

sults on the ZCU104 MPSoC FPGA platform for the SVQNN
models are presented in Table I, showing good trade-offs
between resource utilization, latency, and throughput. The
SVQNNS model for the FLASH dataset outperforms Omni-
CNN in accuracy, requiring only ∼20% of the LUTs and
∼27% of the on-chip memory available. The lightweight
models require only <1% of the on-chip block RAM (BRAM)
while achieving a latency of less than 0.1 ms, showcasing the
benefits of quantization. Although ZCU104 MPSoC platform’s
constrained resources limit the parallelization potential of
complex models like SVQNNS , thus capping its throughput,
it far exceeds the sample rate of LiDAR in the order of 10-
30 fps [19], [20], ensuring real-time capability for beam
prediction and LiDAR data processing. Table I shows that
the lightweight SVQNN models achieve high throughput with
low resource usage, demonstrating a clear trade-off between
hardware efficiency and accuracy. The bit-width of QNN
weights and activations also influences the resource usage
and latency due to the increased complexity of the multiply-
accumulate (MAC) operations, as shown in Fig. 6(c).

Impact of parallelization: The interrelation between paral-
lelization and resource utilization is shown in Figs. 6(a) and
6(b), based on the FINN estimation results on FPGA of the
FLASH SVQNNS model. The resource-constrained ZCU104
platform imposes limits on the degree of parallelism that can
be applied, leading us to rely on FINN estimation results.
Increasing the MVU width or the number of PEs and SIMD
lanes reduces latency but increases resource requirements as
shown in Figs. 6(a) and 6(b), underscoring the trade-off be-
tween speed and resource efficiency. Fig. 6(b) shows the effect
of manual folding only for the first convolutional layer. Fur-
thermore, FINN’s architectural approach associates preloaded
weight memories with each PE, elevating the BRAM usage,
as shown in 6(b). Larger memory blocks would also intro-
duce increased routing delays, thereby reducing throughput.

TABLE I
Performance, hardware results, and comparison of the QNN-LiDAR model.

Model Top-1 Number of Inference Model LUT BRAM Throughput Hardware
accuracy (%) parameters latency(ms) size (KB) utilization utilization fps platform

DeepSense Dataset
SVQNNL (2, 2)1 48.51 21,136 0.028 5.3 4,804 (2.1%) 1 (0.3%) 305761 Zynq Ultrascale+
SVQNNS (2, 2) 52.17 590,976 0.151 144.3 21412 (9.3%) 69 (22.1%) 22347 Zynq Ultrascale+
Jiang et al. [2] 57.51 ∼40,000 1.38 156.3 − − − Intel Xeon Silver 4216

FLASH Dataset
SVQNNL (4, 4) 61.76 23,872 0.09 11.7 19710 (8.5%) 2 (0.6%) 55246 Zynq Ultrascale+
SVQNNS (2, 2) 85.43 612,864 0.179 149.6 45806 (19.9%) 84 (26.9%) 22904 Zynq Ultrascale+
Omni-CNN [3] 82.68 ∼100,000 ∼0.008 390.6∗ − − − Not disclosed

FLASH [26] 68.17 ∼690,000 0.6 2695.3∗ − − − Not disclosed
1(Weight, activation) bit-widths; ∗Assuming 32-bit precision
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Fig. 6. Effect of parallelization and bit-width on resource usage and latency for the FLASH dataset and SVQNNS model.

Therefore, careful tuning of folding parameters is essential
to balance the performance and hardware efficiency. Higher-
end platforms like the ZCU208 RFSoC [24] support deeper
parallelism than the ZCU104, offering better throughput and
lower latency for larger models. Our ongoing work focuses on
porting our QNN models to the ZCU208 platform.

IV. CONCLUSIONS

This paper addressed the critical need for real-time,
environment-aware beam prediction in beyond-5G networks
by leveraging the synergy of LiDAR data and QNNs. Our
FPGA-based implementation of LiDAR-QNN model demon-
strates the feasibility of deploying low bit-width QNNs for
beam prediction in mm-wave networks, balancing accuracy,
latency, and hardware efficiency. Using the DeepSense and
FLASH datasets, we validated our model’s performance in dy-
namic real-world environments, achieving inference latencies
in the range of tens to hundreds of microseconds, 100 to 1000
times faster than the LiDAR data rate. This showcases the
model’s real-time inference capabilities and its applicability
to beyond-5G scenarios.
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