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Abstract—Implementation of convolutional neural
networks (CNNs) on resource-constrained devices like
FPGA (example: Zynq) etc. is important for intelligence
in edge computing. This paper presents and discusses different
hardware optimization methods that were employed to design
a CNN model that is amenable to such devices, in general.
Optimization techniques such as adaptive processing, inter and
intra-layer parallelism etc. are employed to show the superior
performance of proposed methods over the state-of-the-art.

Index Terms—FPGA, convolutional neural networks, hardware
optimization, resource-constrained devices, automated code gen-
eration

I. INTRODUCTION

Convolutional Neural Networks (CNN) have wide appli-
cations in almost all fields and getting enormously popular.
Recent innovations in CNNs give rise to numerous intelligent
applications in embedded vision, IoT, mobile systems, etc.
Despite this popularity, the implementation of CNNs into
hardware, especially resource-constrained devices, is still a
cumbersome task. The resources in the embedded hardware
platforms are very much limited to accommodate the com-
plexity of CNNs having millions of parameters and billions of
operations. Even MobileNets [2] and SqueezeNet [7], which
are designed for mobile devices, are having a parameter count
of 4.2M and 1.2M and the number of MAC operations of
569M and 352M respectively. The high complexity of CNNs
makes Graphics Processing Units (GPUs) the obvious choice
for hardware because of their high computation capability and
the availability of many supported frameworks. Though, power
consumption and the inability to work as a standalone unit
other than a hardware accelerator pulls the GPUs back when
it comes to embedded systems. The rapid improvement in
FPGA technology paved the way to choose FPGAs as the
preferred platform presently to implement machine learning
algorithms. Along with its flexibility in design, ability to
handle custom low-precision datatypes, and the ability to work
as a standalone system are more advantageous for FPGAs.
Still, resource constraints and the unavailability of a suitable
hardware framework for CNNs are adversely affecting the
implementation of CNNs on FPGAs. Hence it becomes very
much important to optimize the network for inferencing on
hardware.

In this work, a hardware-optimized design is proposed,
targeting resource-constrained devices. Different optimization
techniques in terms of data quantization, adaptive data process-

ing, efficient use of on-chip BRAMs, and intra-layer and inter-
layer pipelining along with limited channel level parallelism
are employed to generate the hardware code to suit resource-
constrained devices without affecting the performance ad-
versely. An optimized Verilog library is created according
to the proposed design. The hardware code for the CNN
model is generated in Verilog with the help of python based
generator scripts using the verilog library. The python-based
script generates and trains the CNN with the help of Keras
framework with Tensorflow backend and pre-processes the
trained parameters and generates the Verilog code for hardware
inference. This optimized hardware design produces better
performance with respect to resource utilization compared to
other related works.

II. BACKGROUND

Increasing researches in the area of machine learning and
deep neural networks provide much better neural network
models with near-human accuracy and performance. Starting
with LeNet [24], which had only less than 60K parame-
ters, many improved and accurate models with increasing
complexity were put forward. With the increase in complex-
ity, the implementation on hardware becomes equally com-
plex. Also, hardware-oriented approaches like MobileNets [2],
SqueezeNet [7], Ristretto [17], etc. provided much compressed
CNN models which suits hardware. Though, most of the
hardware inference implementations like [3], [4], [14], [18]
are focused on throughput and latency and not really targeted
for resource-constrained devices. Work in [28] gives a very
good implementation in terms of throughput/slices but usage
of more number of DSP units and BRAM is a problem. Work
in [19] reduces the usage of DSPs and BRAM but, lags behind
in performance. Hardware frameworks such as [5], [8], [11],
[22], [25], [26] also produces some of the best design in terms
of throughput and latency, but not in terms of resources.

In order to reduce the hardware implementation complexity,
it is important to do optimization in the algorithmic level also.
In CNNs, the convolution layers of feature extraction layers
constitute the least number of parameters whereas dense layers
or classifier layers generate large parameter count and in terms
of computational complexity, convolution layers constitute the
most number of multiplications and additions. The size of
the convolution kernel hence makes a huge difference in
complexity. AlexNet [1] uses kernel sizes of 11x11 and 5x5,
which creates a lot more multiply and accumulate operations



(MAC) compared to the same model with a filter size of 3x3.
ResNet [12], Inception network [15] and GoogleNet [6] proved
the same by introducing 3x3 and 1x1 filters, which reduced
the complexity and parameter count significantly. Hence in
this work, the size of the convolutional layer kernel size is
chosen so that it will reduce the complexity of the network.
The All Convolutional Net [21] eliminates all the dense layers
and uses only convolutional layers for classification. This in
fact can reduce the number of parameters. Hence, reducing the
convolution kernel size and the number of dense layers can
reduce the parameter count, which is very much advantageous
for implementation on hardware.

Techniques like data quantization are very much effective
in reducing the complexity at both algorithmic and hardware
levels. Works in [9], [10], [18], [20] uses fixed-point numbers
effectively to reduce the complexity of the network. Still, the
disadvantages like underflow in fixed-point format demand to
increase the number of bits for representing a wide range
of values. Pipelining and parallelism are also important tech-
niques to improve the performance of the implementation on
hardware [10], [16]. Even though parallelism is very common,
the advantages of pipelining are not fully explored yet. Work
in [16] provides a very detailed explanation of intra and inter-
kernel parallelism. But, complete parallelism actually increases
resource utilization very much [10], [18]. Hence, it can be con-
cluded that limited parallelism along with complete pipelining
is the best solution for increasing the performance in resource-
constrained devices. In this work, we are proposing optimized
hardware models using sequential and pipelined implementa-
tion strategies along with limited channel-level parallelism to
efficiently implement CNNs on resource-constrained devices.
The sequential model utilizes pipelining within the layer (intra-
layer pipelining) and the pipelined model utilizes both intra-
layer and inter-layer pipelining. Both models use limited-level
parallelism to increase the execution speed. The hardware
optimization strategies used in this work are described in the
following sections.

III. PROPOSED CNN MODEL FOR HARDWARE

Choosing a suitable hardware architecture is very much
important to implement CNNs on hardware. In this work,
the computational complexity and the size of the parameters
are taken as two key factors while designing for resource-
constrained devices. Hence, we use a customized model with
a constant convolution kernel size of 3x3 and used only one
dense layer as the classifier. This helps to reduce the compu-
tational complexity in convolutional layers and to reduce the
parameter count in dense layers. The hardware architecture of
the evaluation model is explained in detail in section 5. The
optimization methods employed are explained in detail in this
section.

A. Hardware optimization

Hardware optimization is one of the key factors while infer-
encing a CNN on to hardware. In this work, we have employed

various optimization techniques for resource-constrained de-
vices as explained in the following sections.

1) Data Quantization: Data quantization is employed to
reduce the computation overhead. In order to improve the
performance on hardware, either fixed-point format or binary
integer format are used instead of floating-point numbers. Most
of the research employs fixed-point format [3], [18], [28]
to reduce the bit-width of the operands, but in this design,
we employ signed binary integer format to perform all the
computations. Even though fixed point format can provide
better accuracy, the number of bits required to represent a wide
range of numbers would be more and also would require pre
or post-processing after multiplication similar to floating point
operations. Another disadvantage with fixed-point format is
underflow which can lead the result to be zero if the operands
are very small fractional values. This would require scaling
up before multiplication and this can in fact cause the other
operands in the dataset to go out of range if the bit width is
not large enough. In the signed binary integer format, the bit-
width of the input data and trained parameters are scaled down
to 8-bit by using a proper scaling factor and hence the size
of the multiplier at the first convolution stage would be 8x8
only. Since the first convolution layer is the most computation-
intensive layer compared to other convolution layers, keeping
the bit-width of operands to 8-bit could save a lot of resources
and time. The maximum size of the multiplication operation
would be 16x8 at any stage of the model after the first
convolution layer. The output of all the 16x8 multiplication
operations of other layers are set to 16-bit by scaling down
by 4-bit and then truncating the scaled down 32-bit result to
16-bit.

2) Scaling: Since this work uses signed binary integers,
scaling is important to keep the numbers within the range.
Unlike fixed-point format, scaling doesn’t cause underflow or
overflow but keeps the numbers within the range. Scaling is
performed in every layer and is employed after every convo-
lution operation in the first convolution layer, and after every
multiply-accumulate (MAC) operation for all other layers. The
result of first layer convolution operation is 16-bit and is scaled
down by 16 (4-bit right shift) after multiplication and addition
of bias. In all other convolution layers, the 16x8 multiplication
gives a 32-bit result and the result is scaled down by 16
(4-bit right shift) and truncated to 16-bit. While performing
truncation, if the 32-bit value is greater than 32767, the value
is set to 32767 and if the value is less than -32768, the value
is set to -32768. In other words, the value is truncated up or
down to the maximum possible value a 16-bit number can
represent if the values exceed the range. If no overflow occurs
in the 32-bit scaled down value, the upper 16-bits are truncated
and only the lower 16-bits are taken as output. Similarly, the
bias in each of the consecutive convolution layers are scaled
up by 16 (4-bit left shift) and changed to 16-bit from 8-bit.
The scaling is performed to make the ratio of multiplication
output and bias the same after the integer multiplication
because integer multiplication doubles the range of numbers
compared to normalized floating-point number multiplications.



After adding bias with the 16-bit output from the multiplier,
the 18-bit sum is again truncated as done previously during
multiplication. For the final dense layer, the scaling down and
truncation is not performed and the output is kept as 32-bit
to preserve the accuracy of the classifier. But, if there are
multiple dense layers in the design, scaling and truncation are
performed in all other dense layers except the final layer. The
bias is scaled up by 64 (6-bit left shift) and changed to 16-bit
from 8-bit to preserve the ratio of bias and the 16-bit result
after multiplication.

3) Adaptive data processing: Most of the prior work [2,
4, 8, 14, and 15] concentrates on a single repeating processing
element (PE) for all core operations like convolution and
pooling. This can sometimes be inefficient. The convolution
operation for multiple input channels may require more re-
sources than a single-channel convolution operation as the
sequence of MAC operations vary and for each output channel,
a multi-input adder is required to add the convolved input
channels. Using the same multi-input channel convolution
module for single-channel input operation might cause a waste
of resources and power for a convolution layer having multiple
output channels if the channel calculations are performed in
parallel. Also, the size of the multiplier cannot be varied if we
are planning to use the same PE for all the layers. Adaptive
selection of processing modules would save a lot of resources
with multiple channels executing in parallel, especially in
the first convolution layer, which is the most computation-
intensive convolution layer. Another important thing to be
mentioned is that in this proposed design, the ReLU operation
is performed within the convolution layer itself, which would
save the temporary storage buffers and data load time while
using a separate ReLU layer.

Similarly, the size of the max-pool kernel is always fixed
to 2x2 in almost all the state-of-the-art designs [1]–[3], [19],
[27], [28]. One disadvantage of this design is that if the input
dimension is odd, the last column of the input feature map
will be ignored by the kernel window. This can cause loss
of information and accuracy, especially at the deeper layers
where the feature maps have fewer dimensions. Hence, in
order to avoid data loss during max-pooling, dynamic selection
of 2 different kernel sizes is employed based on the input
dimension. If the input dimension is even, the pooling kernel
size is selected as 2x2 and if the input dimension is odd,
kernel size is selected as 3x3. Also, this work uses different
dense layer modules for pipelined and sequential models and
is explained in detail in the following sections.

Convolution Layer: For single channel input, the convo-
lution kernel - where the convolution operation (multiply-
accumulate) is performed- loads the input data directly from
the BRAM each time the convolution kernel is called. The
advantage of direct load is that the input registers which are
required to store the preloaded data can be avoided. The
biases and weights are loaded only once as they remain
constant, which avoids unnecessary delay. Figure 1 shows the
convolution module for a single channel input. The scaling and
truncation of the output and ReLU operation is also performed

Fig. 1. Convolution module for single channel input for all output channels

Fig. 2. Convolution module for multi-channel input for a single output channel

in the convolution kernel itself which will help to minimize
the temporary storage registers. The result is directly stored in
the BRAM which can be accessed by the subsequent max-pool
layer.

For multi-channel input, the addition of bias is not per-
formed in the convolution kernel, as it is required to have the
convolution results of all the input channels before accumula-
tion and bias addition. Hence the multi-channel convolution
operation uses multiple convolution modules equal to the
number of output channels. Each of these modules calculates
the output for the corresponding output channel. This module
uses a multi-input adder having inputs equal to the number
of input channels plus the bias. During pipelined execution,
these modules are used in parallel and hence these adders
will consume unnecessary resources if used for single-channel
input. The weights are preloaded for each channel directly



Fig. 3. Dense layer calculation module for sequential model

from BRAM only at once in the same way as in single-
channel convolution, whereas the bias for all output channels is
preloaded before the shift window operation. The convolution
operation for each input channel is performed at once and
then the elements are added together along with the bias.
Unlike single-channel convolution, scaling and truncation are
performed twice after each addition operation. The output
after the ReLU operation is recorded to BRAM. The block
diagram of multi-channel convolution module for a single
output channel is shown in figure 2.

Max-pooling layer: Max pooling operation also uses adap-
tive processing where the kernel size is determined by the
dimension of the input to ensure best possible accuracy. The
kernel size is selected to be either 2x2 or 3x3 based on the
input dimensions and has a constant stride-width of 2. If
the input dimension is even, the kernel size is taken as 2x2
whereas it is 3x3 when the input dimension is odd.

Dense layer: Adaptive selection of dense layer is used based
on whether the hardware optimization technique employed is
either sequential or pipelined version of the CNN hardware
model. In sequential execution, the complete data to the dense
layer is already available and hence the computation module
takes the flattened input data and computes each neuron’s
operation one after another. In pipelined execution, as soon as
the first output element of preceding max-pool layer becomes
available, the dense layer starts computation. Hence, the dense
layer computation module for pipelined versions takes a single
element as input and computes all the neuron operations at
once and the result of each neuron is accumulated and stored in
a temporary buffer until next input is available. These neuron
operations can be performed either in parallel or sequentially
by re-using the multiplier depending on the user requirements.
Figures 3 and 4 show the different dense layer computation
modules for pipelined and non-pipelined versions.

In the non-pipelined version, the neuron calculation (NC)
module has an input size equal to nx1 where n is the feature-
map dimension, whereas in pipelined version, the input size
of NC module is 1x1, i.e. a single element. Similarly, the
input weights and bias size is nx1 and 1x1 respectively for the

Fig. 4. Dense layer calculation module for pipelined model

non-pipelined and pipelined version. The non-pipelined NC
module will have n multiplications and n-1 additions whereas
the pipelined NC module will have only one multiplication
and one addition in each cycle. The NC module of the non-
pipelined version will be executed either sequentially or in
parallel depending on the hardware platform and resource
availability. It can use either multiple NC modules in parallel
or multiple multipliers inside the NC module to speed up
the execution. Similarly, in the pipelined model, the parallel
NC modules can also be executed sequentially by reusing a
single NC module. These configurations will depend on the
performance requirements.

4) Use of on-chip BRAM as storage registers: In con-
volutional neural networks, the storage of intermediate results
between different layers would require a considerable amount
of memory bandwidth as the size of the output feature-maps
of layers is much larger. Using distributed memory for storing
intermediate results would consume a lot of FPGA resources.
In most of the works, on-chip BRAM is used to store only the
parameters [3], [28], because of the limited memory available
and is not often used to store intermediate results because
of the delay associated with memory access also. Some of
the works use off-chip RAM to store the intermediate results
or parameters [10], [14], [18]. The delay associated with
the storage and retrieval from external RAM will be more
compared to retrieval from on-chip memory. In this work, the
storage and retrieval time is negligibly reduced by pipelining
the operations within the layers and hence, no additional
clock cycles would be required for memory write and read
operations. Intra-layer pipelining is employed in all layers
and is explained in detail later. Though both convolution and
max-pooling layers would cause retrieval delay from RAM
during sequential execution, the dense layer operations can be
pipelined in sequential execution also to produce zero retrieval
delay as the dense layer module can process one operand at a
time unlike convolution or pooling modules which require an
array of elements in each operation. So, as soon as the results
are written to the RAM, the dense layer can start processing
at the same time and hence the time taken to retrieve the data



Fig. 5. Pipelining inside the convolution kernel

can be merged with the execution time of the previous layer.
5) Zero skipping: The convolution and dense layer mod-

ules skips the multiplication operation and assert the result
as zero if any of the operands is zero. Most of the values
of the input feature map of the image are actually zeros and
hence, skipping multiplications when operands are zero saves
a significant amount of time and energy during inferencing.

6) Pipelining of operations:
a. Intra-layer pipelining Pipelining is employed in all layers
to limit resource utilization, reduce latency, and increase
throughput. One of the most important advantages of intra-
layer pipelining is that it can save the time delay associated
with the memory write and read operations to RAM in each
layer.

The pipelining method in convolution layers is shown in
figures 5 and 6. The convolution module employs multiple
pipelining strategies within the convolution module and within
the convolution kernel. Within the convolution kernel, the
multipliers and adders are pipelined in such a way that as
soon as the multiplication operation is completed, the next
multiplication operation starts as shown in figure 5. The
convolution kernel loads all the input data and weights re-
quired for the whole convolution kernel operation at once and
hence no waiting time is required to load data from memory
at each multiplication operation. The temporary results of
multipliers are stored in buffers associated with each multiplier
and the accumulated results after addition are stored in a
common buffer. Note that the buffer used after accumulation
is common for all the addition operations and the results of
each multiplication are added with the previously stored result
in the buffer.

Each convolution kernel operation is followed by Scaling
and ReLU operation, and then a write operation to BRAM.
This operation is also pipelined within the convolution module
as shown in figure 6. As soon as a convolution operation is
completed, the next convolution starts and the results of the
first convolution are scaled, performed ReLU, and then written
to BRAM in parallel with the second convolution operation.

The execution time for a convolution layer and ReLU layer
can be expressed as,

Tconv = Nic ∗Noc ∗ Tck ∗Doc
2 (1)

Fig. 6. Pipelining operations in the convolution module

TReLU = Noc ∗ Trk ∗Doc
2 (2)

Where, the convolution kernel execution time,

Tck = k2 ∗ (Tmr + Tmul + Tadd + Tmw) (3)

and the ReLU kernel execution time,

Trk = Tmr + Tor + Tmw (4)

Where, Tmr-memory read time, Tmul-multiplication time,
Tadd-addition time, Tmw-memory write time, Nic-number
of input channels, Noc-number of output channels, Doc-
dimension of the convolution layer output feature map, k-
convolution kernel size, Tor-ReLU operation time.

Since the ReLU operation is associated within the con-
volution kernel itself it would save the memory read and
write times and also would save the temporary storage space.
Then the total execution time of the convolution layer can be
expressed as,

Tconv = Nic ∗Noc ∗ Tck ∗Doc
2 + (Nic ∗ Tor ∗Doc

2) (5)

i.e.;

Tconv = Nic ∗Noc ∗ k2 ∗ (Tmr + Tmul + Tadd + Tmw) ∗Doc
2

+(Noc ∗ Tor ∗Doc
2)

(6)
To minimize the execution time in convolution kernels, the
best possible way is to use the number of multipliers equal
to k2, which would help to compute the output in one
calculation cycle. Along with pipelining, the time required
for addition and memory operations can also be saved to
provide the best possible execution time. But, this in fact will
cause drastically increased resource utilization especially if the
layer has multiple input and output channels. This is entirely
dependent on the embedded hardware resources available. In
order to cop up with this, we only use pipelining in kernels,
but we use parallel modules for each channel operation. This
would speed up the execution time significantly compared to
the sequential model, but would not consume much of the
resources and memory.

The total execution time of the convolution layer consider-
ing the parallelism changes, but not considering the pipelining
can be expressed as,

Tconv = (k2 ∗ (Tmr+Tmul+Tadd+Tmw)+Tor)∗Doc
2 (7)



Fig. 7. Pooling layer and dense layer pipelining operation

Considering intra-layer pipelining,

Tconv = (k2 ∗ Tmul) ∗Doc
2 + Tmr + Tadd + Tor + Tmw (8)

For a LeNet-5 CNN, for the convolution layer where Nic=6,
Noc=16, k=5, Doc=8, the intra-layer pipelining along with
channel level parallelism provides ∼240x reduction in execu-
tion time compared to the non-optimized baseline model[9].

Max-pooling operation is also pipelined so that pooling and
memory write can be performed simultaneously along with
the convolution layer. Similarly, the NC operation along with
memory write is also pipelined in the dense layer as in figure 7.
The calculation time can be reduced further in the dense layer
to almost none if the user can afford the number of multipliers
in parallel equal to the number of neurons and separate BRAM
units. In such case, as soon as the max-pooling operation starts
writing the results to memory, the dense layer can access the
data at the same time and start the MAC operation, which
means no additional time is required for max-pool operation
and data access from BRAM, as the execution time required
for dense layer calculation module is more compared to max-
pool kernel. It is shown in figure 7. As in figure 7, the max-
pooling and dense layer calculations run in parallel. Since both
operations require different execution times during sequential
execution, the NC operation has to wait until the previous
NC is completed even if the max-pool output is available.
The dense layer pipelining also employs multiple pipelining
strategies within the layer similar to the convolution layer.
Each neuron calculation module is pipelined in sync with the
pooling layer. Also, within the NC module, each multiplication
operation is also pipelined exactly as in the convolution kernel
shown in figure 5.

The pooling layer execution time can be expressed as,

Tpool = Nip ∗ Tpk ∗Dop
2 (9)

Where the pooling kernel execution time,

Tpk = m2 ∗ (Tmr + Top + Tmw) (10)

Where, Nip-number of input channels to the pooling layer,
Top-max-pool operation time, Dop-dimension of the pooling
layer output feature map, and m-maxpool kernel size. Consid-
ering both channel level parallelism and intra-layer pipelining,
equation 9 becomes,

Tpool = (m2 ∗ Top) ∗Dop
2 + Tmr + Tmw (11)

For LeNet-5 CNN, for the pooling layer where
Nip=16,m=2,Dop=4, the intra-layer pipelining along
with channel level parallelism provides ∼45x reduction in
execution time compared to the baseline model.

The best possible way to speed up the dense layer calcula-
tion is to employ the number of multipliers equal to the number
of neurons. This wouldn’t be wise in terms of resources even
though the whole dense layer calculation can be completed in
a single calculation cycle. This work proposes limited channel
level parallelism where it employs the number of multipliers
equal to the number of output channels of the preceding layer
of the dense layer, which would calculate the dense layer
operations in parallel for each neuron in each channel along
with pipelining operations. This would save a huge amount
of resources and the dense calculation time is reduced by a
factor equal to the number of input channels to the dense layer
compared to the baseline model.

The dense layer execution time,

Tden = Nid ∗Dod
2 ∗ Tdk ∗Nn (12)

where, the dense kernel execution time,

Tdk = Tmr + Tmul + Tadd + Tmw (13)

Where, Nid-number of output channels in the preceding layer,
Nn-number of neurons, Dod-dimension of the preceding layer
output feature map.

Considering both channel-level parallelism and intra-layer
pipelining,

Tden = Dod
2 ∗ Tmul ∗Nn + Tmr + Tadd + Tmw (14)

For LeNet-5 CNN, for the dense layer where Nid=16,
Nn=120, Dod=4, the intra-layer pipelining along with channel
level parallelism provides ∼40x reduction in execution time
compared to the baseline model.

b. Inter-layer pipelining: Pipelining along with limited-
level parallel execution is employed between the layers to
reduce the latency at the expense of an increased number of
BRAM and DSP blocks. In sequential execution, each channel
is executed one at a time and the results are accumulated
after the execution of the final channel. Whereas for inter-layer
pipelining, all the channels in each layer is executed together
and hence making it possible to pipeline the layers.

i) Sequential execution: During sequential execution, only
a single computation module is used in each layer and it
is reused for each channel calculation. Fig. 8 shows the



Fig. 8. Sequential execution model

sequential execution model. In the Convolution layer, only
one channel is executed at a time and once the execution is
finished, the next channel execution is started. The computed
results of each channel are stored in BRAM in a sequential
order one after the other. Once the convolution layer completes
its execution, the max-pool layer loads the data from the
BRAM and starts computation. Also for the max-pool layer,
pooling operation is performed sequentially for each input
channel. The result is again stored into BRAM which is then
loaded to the dense layer. For the dense layer, the computation
module is executed as many times as equal to the number of
neurons, where the flattened output of the max-pool layer is
taken as a single vector. The execution time in the sequential
model increases as the number of layers and channels increases
but ensures a minimal increase in resources.

For convolution layers having multiple input channels, each
input channel is multiplied with corresponding weights and
then each element of the outputs are added together to get
the final output. Since this accumulation can only be started
after the completion of all input layer calculations, we can use
parallel adders to compute all the output elements together as
we have all the inputs to the adders available at the same time.
Using the adders in parallel, the execution time for addition
operations can be eliminated. But, the execution time for
additions at the output is very much less compared to the con-
volution operations. Hence sequential addition wouldn’t cause
comparable delay and also would save a lot of resources. A
single adder can be reused to save resources with a negligible
increase in execution time.

Pipelining of sequential model: Non-pipelined sequential
model is the standard base model of the convolutional neural
network. Inter-layer pipelining of this model will minimize
the execution time than the non-pipelined version with a
negligible increase in resource utilization. Also, note that the
non-pipelined version still has the intra-layer pipelining as
the basic layers are already pipelined internally. Since the
processing elements and execution pattern do not vary much,
it is always better to use the inter-layer pipelined version than

Fig. 9. Inter-layer pipelined model showing convolution, pooling and dense
layers

the non-pipelined version of the sequential model. The only
difference would be the execution pattern of the dense layer.
Though, there are limitations as all layers cannot be pipelined
completely because of the sequential execution pattern.

ii) Fully pipelined execution: In inter-layer pipelining, all
layers start execution at the same time as soon as a possible
computation input is available from the previous layer. To
exploit the maximum possible reduction in execution time,
all the channels must be executed together so that the next
layer does not have to wait until all the channel executions are
completed to get the final output. This model will require only
the time required to calculate the last row of the activation map
for all the other layers except for the first layer. Figure 8 shows
the fully pipelined execution model. Such a fully-pipelined
execution model also demands and exploits parallelism within
the layers. This model effectively make use of on-chip BRAM
as intermediate storage registers for each output channel of
each layer. One important thing to be mentioned is that the
size of the BRAM of each layer is dynamically selected based
on the input specifications of the model to ensure that the least
possible size is selected to minimize the BRAM usage.

Intra-layer Parallelism: Each layer uses a dedicated com-
putation module for each channel and hence the execution
is performed in parallel. The pipelining operation is shown
in figure 10. This type of execution can reduce the size of
temporary storage buffers. In sequential execution, the size of
the temporary storage buffers will be the same as the size of
the output of each channel whereas in the pipelined parallel
model, the size of buffers will be equal to the size of a single
element. This makes a huge difference in the reduction of
buffer sizes. But pipelined model makes use of block RAMs
for each channel output as shown in figure 9 and this can
increase the number of BRAMs required compared to the
sequential model. In the sequential model, the size of the
BRAM increases as the number of channels are increased
and the number of BRAMs remains constant. Whereas in the
pipelined parallel model, the number of BRAMs will be equal
to the number of channels but the size remains the same. The
intra-layer parallelism is dynamically configurable according
to the user-given performance metrics. Parallelism will be
applied to the computation modules or to the multipliers inside
the computation module or a combination of both depending



on the best possible configuration to achieve the required
performance.

Each layer starts execution as soon as the inputs from
previous layers are available for the computation of at least
one element. The max-pool layer 1 requires the first two rows
from convolution layer 1 to start the computation of its first
row as the kernel size of the max-pool layer is 2x2. As soon
as the first 2 rows are computed in the first convolution layer,
the max-pool layer starts its computation. Similarly, second
convolution layer starts computation as soon as the third row
is computed is max-pool layer 1. The dense layer can start
its computation when the first element of max-pool layer 2
output is available.

Even though the max-pool layer starts its execution after
the completion of the first two rows, it is possible to start
when the first two elements of row 2 are available given
that the max-pool kernel size is 2x2. But, this is not really
required as the max-pool execution time is very much less
compared to convolution time. Also, if the pipelining opera-
tion is scheduled element-wise instead of row-wise, it would
increase the number of states in the finite state machine (FSM)
for pipelining. The number of states in the FSM required for
pipelining depends on the number of layers and the number
of possible conditions we consider in each layer. For a 5-
layer (not considering ReLU) CNN, the number of states
required for a non-pipelined version would be 7 or in general,
n+ 2 where n is the number of layers. For a fully pipelined
version, the number of states would increase to 34, or in
general 2n + 2. Also, if we consider multiple conditions, for
example, considering both row and element-wise pipelining
in the single layer, it would increase the number of states
exponentially and each condition would be added to n. i.e.;
one more condition in a layer means the number of states
would increase to 2(n+1)+2. Hence, it is better to consider
only the row-wise pipelining as it wouldn’t cause any delay
because of the lower execution time of the max-pool layer.
To employ inter-layer pipelining for deeper networks, it is
advisable to apply inter-layer pipelining in multiple sections
of the network separately. A group of 5 or fewer layers will
be taken as a section and parallel computation modules can
be applied in the intermediate layer between two sections to
reduce the execution time of the intermediate layer. In this way
the complexity of the pipelining FSM can be reduced and also
BRAMs can be reused in each section.

The pipelining method used in this work reduces the exe-
cution time significantly as shown below, without using many
parallel blocks and without using too much of resources. Let’s
consider Ttotal as the total execution time.

Ttotal = Tconv + TReLU + Tpool + Tden (15)

Where Tconv , TReLU , Tpool, and Tden are given in equations
2, 3, 9, and 12. Considering intra-layer pipelining and inter-
layer pipelining along with channel level parallelism, all the
layers except the first convolution layer and dense layer would
require only the time required to calculate the last row of the
feature map. The dense layer calculation starts as soon as the

Fig. 10. Inter-layer pipelining operation

max-pool operation computes its first element and continues
until the output is calculated as the neuron calculation time is
more compared to the pooling operation. Then, equation 15
can be written as,

Ttotal = (k2 ∗ Tmul) ∗Doc
2 + Tmr + Tadd + Tor + Tmw

+m2 ∗ Top ∗Dop + Tmr + Tmw +Dod
2 ∗ Tmul ∗Nn

+Tmr + Tadd + Tmw −m2 ∗ Top ∗Dop + Tmr + Tmw

(16)
Ttotal = k2 ∗ Tmul ∗Doc

2 + 2Tadd + 2Tmr + Tor + 2Tmw

+Dod
2 ∗ Tmul ∗Nn

(17)
For LeNet-5 CNN, for the final convolution, max-pool, and
dense layers, where k=5, Doc=8, Nn=120, Dod=4, the intra-
layer and inter-layer pipelining along with channel level paral-
lelism provides ∼132x reduction in execution time compared
to the baseline model.

IV. EXPERIMENTS & EVALUATION

A. Experimental setup

The evaluation of the hardware design is done on Zedboard
which uses Xilinx Zynq Z-7020 FPGA. The evaluation dataset
used is the MNIST dataset for handwritten digit recognition.
For the evaluation on hardware, different configurations of the
proposed hardware design are set up. For inference testing
and evaluation purpose, different versions of LeNet [23], [24]
architecture is used. The proposed design is optimized to
reduce the computational complexity and parameter count to
support resource-constrained devices. To leverage the best
performance from the proposed design, a custom-modified
architecture of LeNet-1 [23] is implemented and is termed
model 1. Model 1 has two versions, 1.a and 1.b, which are
the pipelined and sequential versions of model 1 respectively.
Model 1 consists of 2 convolution layers, 2 ReLU, 2 max-pool,
and a single dense layer as shown in figure 11. The convolution
layers have a constant filter size of 3x3 and a stride width of 1.
The max-pool layers can have two different filter sizes, either
2x2 or 3x3, depending on the input to minimize the loss in
accuracy. The dense layer has neurons equal to the number of
classifiers. While training, the dropout layer is also introduced
before the dense layer. For inference implementation, the
softmax layer is replaced with a simple maximum function
which would serve the purpose without using many resources



Fig. 11. Model 1 - CNN evaluation model

Model Model 1.a Model 1.b Model 2.a Model 2.b Model 3.a Model 3.b
Version Pipelined Sequential Pipelined Sequential Pipelined Sequential
Convolution
layers 2 2 2 2 2 2

Conv kernel
size 3x3 3x3 5x5 5x5 5x5 5x5

Filter channels variable variable 6, 16 6, 16 6,16 6,16
Pooling layers 2 2 2 2 2 2
Pooling kernel
size 2x2 or 3x3 2x2 or 3x3 2x2 2x2 2x2 2x2

Dense layer 1 1 3 3 2 2
Number of
neurons 10 10 120,84,10 120,84,10 100,10 100,10

TABLE I
Details of evaluation models used for comparison

or degrading timing performance. This model is best suited for
the proposed design because it contains only a single dense
layer, which is sufficient to provide comparable accuracy [21],
and most importantly reduces the parameter count.

Even though increasing the dense layer count in the pro-
posed design would deteriorate the performance for this design
in terms of resources, to perform a fair comparison with the
existing works which uses different hardware architectures,
two other models, model 2 and 3 are also implemented by
using the proposed design method. The features of all the 3
models used for evaluation are shown in table I. Model 2 is im-
plemented by using the proposed design method which follows
the architecture of LeNet-5 [24]. Model 2 has two variants, 2.a
and 2.b, which are the pipelined and sequential counterparts of
the same. Model 3 follows LeNet-4 architecture, which is also
implemented by using the proposed design method. Model 3.a
and 3.b are the pipelined and sequential versions of model 3.
In dense layers, models 2 and 3 use BRAMs for temporary
storage whereas model 1 uses distributed memory as the output
of the dense layer of model 1 is directly fed to the softmax
layer.

B. Results & Comparison

Various configurations of model 1.a and model 1.b are tried
by altering the number of filter channels for each convolution
channel. For sequential and pipelined models, the number of
parameters and both hardware and software accuracy increases
with an increase in the number of channels as shown in
table II and III. For model 1.b, delay and LUT and FF
utilization increase with the increasing number of channels
whereas the increase BRAM is minimal as shown in table
II. DSP units remain constant in model 1.b irrespective of
the number of channels as the processing modules are re-
used in sequential execution, which gives the user the freedom
to use parallel multipliers in convolution or dense modules,

C1-1, C2-1
channel
(Model 1.b)

C1-2, C2-2
channel
(Model 1.b)

C1-3, C2-3
channel
(Model 1.b)

C1-4, C2-4
channel
(Model 1.b)

C1-6, c2-8
channel
(Model 1.b)

LUT 2549 3140 3729 4417 6576
FF 848 1177 1505 1836 4482
BRAM 2.5 3.5 3.5 4.5 5.5
DSP 2 2 2 2 2
Clock cycles required 42387 95571 160703 238317 505004
Hardware accuracy
(software accuracy
in bracket) (%)

76.0 (84.75) 92.0 (93.62) 94.67(95.63) 96.67(97.23) (97.85)98.49

Parameter count 280 568 874 1198 2510
C1-convolution layer 1, C2- Convolution layer 2

TABLE II
Non-pipelined model with different filter channel configuration

and this would increase the speed of execution. In model 1.a,
LUT utilization, as well as the usage of both BRAMs and
DSPs, increase with an increase in the number of channels as
shown in table III because of parallel execution of channels.
There is only a negligible increase in execution time in model
1.a with the increasing number of channels. The percentage
saving of execution time of model 1.a shows an average of
87.5% saving in time after the first convolution layer which
is very much significant. It can be seen from tables II and
III that for smaller networks model 1.a leverages the best
performance compared to model 1.b and as the number of
channels increases, the combined resource utilization of DSPs,
BRAMs and LUTs of model 1.a increases rapidly. By varying
pipelining and parallel execution strategies within the layers
and in between the layers, different design configurations
in terms of execution time and resource utilization which
fall in between the sequential and pipelined models can be
implemented according to the user requirements. Compared
with the works in [3], [14], [19], [28] as shown in table
IV, both models 2.a and 2.b provide better optimization in
terms of resources. Model 2.b uses only 16% of LUTs and
5.5% of DSPs compared to form 2 of [19] and still provides
a 35x reduction in delay, and model 2.a uses only 1.27x
DSPs compared to form 2 and provides 509x reduction in
delay. Work in [3] shows 5.75x and ∼84x speedup compared
to models 2.a and 2.b respectively but shows poor resource
utilization which uses 20x and 460x more DSPs compared
to model 2.a and 2.b respectively. Compared to the work in
[28], model 2.a shows almost similar execution time with 5x
and 10x reduction in DSPs and BRAMs respectively. Though
the design in work [14] shows 6.5x increase in throughput
compared to model 2.b, it uses 5.7x, 12x and 41.2x LUTs,
BRAMs and DSPs respectively compared to model 2.b.

The reduction in latency is very much significant after the
first convolution layer with inter-layer pipelining as shown
in table III. When only intra-layer pipelining is considered,
the convolution layer, pooling layer and dense layer provide a
speedup of ∼240x, ∼45x and ∼40x compared to the baseline
model. Inter-layer pipelining along with intra-layer pipelining
provides a speedup of ∼132x compared to the baseline model.
For model 1.a, the execution times of all the layers after
the first convolution layer got reduced by a maximum of
88.19% as shown in table III. Also, the execution times of
other pooling and convolution layers got reduced by 90.65%.



C1-1, C2-1
channel
(Model 1.a)

C1-2, C2-2,
channel
(Model 1.a)

C1-3, C2-3,
channel
(Model 1.a)

C1-4, C2-4,
channel
(Model 1.a)

C1-6, C2-8
channel
(Model 1.a)

LUT 2113 3718 5753 7550 15526
FF 1367 2208 3115 4090 7941
BRAM 3 5 7 9 16
DSP 4 10 18 28 72
Clock cycles required 33495 33555 33615 33675 33975
Hardware accuracy
(software accuracy
in bracket) (%)

76.0 (84.75) 92.0 (93.62) 94.67(95.63) 96.67(97.23) 97.85(98.49)

% time saving after
1st convolution
layer

88.19% 87.93% 87.72% 87.50% 86.44%

Parameter count 280 568 874 1198 2510
C1-convolution layer 1, C2- Convolution layer 2

TABLE III
pipelined model with different filter channel configuration

TABLE IV
Resource utilization, delay and performance comparison with different

hardware designs

Platform clock Precision DSP BRAM LUT FF GOP/s GOP/s/DSP Delay
[14]
(LeNet-5)

Zynq
Z-7020 100 MHz 16-bit fixed 206 144 38136 42618 39.78 19.3x

[28]
(LeNet-5)

Virtex7
485t NA 16-bit 564 571 15285 2074 5.2 9.22x 1.1ms

[28]
(LeNet-5)

Virtex7
485t NA 8-bit 574 343.5 7204 1316 6 10.45x 0.96ms

[3]
(LeNet-5)

Zynq
UltraScale+ 50MHz 4-8bit 2300 466 30984 63555 NA NA 0.173ms

[19]
form1
(LeNet-5)

Zynq
Z-7020 100MHz 25 bit 20 27 14832 54075 NA NA 26.36ms

[19]
form1
(LeNet-5)

Zynq
Z-7020 100MHz 25 bit 90 3 39879 35399 NA NA 506.93ms

Model 2.a (LeNet-5) Zynq
Z-7020 100 MHz 8-16-bit 115 54 40897 21285 2.25 19.56x 0.996ms

Model 2.a (LeNet-5) Virtex7
485t 100 MHz 8-16-bit 115 54 40930 21290 2.25 19.56x 0.996ms

Model 2.a (LeNet-5) Zynq
UltraScale+ 100 MHz 8-16-bit 115 54 39919 21345 2.25 19.56x 0.996ms

Model 2.b (LeNet-5) Zynq
Z-7020 100 MHz 8-16-bit 5 20.5 6678 8574 0.148 29.6x 14.471ms

Model 2.b (LeNet-5) Virtex7
485t 100 MHz 8-16-bit 5 20.5 6678 8574 0.148 29.6x 14.471ms

Model 2.b (LeNet-5) Zynq
UltraScale+ 100 MHz 8-16-bit 5 20.5 6685 8575 0.148 29.6x 14.471ms

This shows how effectively we can reduce the execution time
without increasing the resources. The comparison of prediction
times with varying parameter counts is shown in table V.
Compared to [13], all the models presented in this work
show at least thousands of fold speedups even with increased
parameter count as shown in table V. Compared with the
percentage of prediction misses in [13], all 3 models shown
in table V shows better accuracy and performance in terms of
execution time for the same parameter count.

While considering the resource constraints, this work also
ensures to have a more satisfactory performance by targeting
resource-constrained devices. The throughput of a CNN design
is very much dependent on the number of DSP units in use.
The complexity of the network is expressed in terms of Giga
Operations (GOP). As shown in table VI, model 2.b shows
∼3x throughput density in terms of GOP/s/DSP with ∼115x

TABLE V
Delay and accuracy comparison with increase in parameters

Parameter count [13] (LeNet-4) Model 1.a Model 3.a Model 3.b
1000 Prediction time 1.097s 0.336ms 0.761ms 1.217ms

Misses (%) 5.27 3.69 3.91 3.91
2500 Prediction time 1.108s 0.339ms 0.763ms 3.425ms

Misses (%) 1.67 1.51 1.66 1.66
5000 Prediction time 1.125s 0.342ms 0.770ms 5.938ms

Misses (%) 1.24 1.26 1.26 1.26
10000 Prediction time 1.160s 0.351ms 0.784ms 7.386ms

Misses (%) 1.14 0.96 1.11 1.11
∼30000 Prediction time 1.375s Nil 0.906ms 13.723ms

Misses (%) 1.12 Nil 1.07 1.07

TABLE VI
Comparison of throughput with existing works

FPGA logic Network GOP/s GOP/s/DSP FPS FPS/DSP

[27] Stratix-V
GSD8 OpenCL AlexNet 72.4 99.58x10−3 49.75 6.84x10−3

[27] Stratix-V
GXA7 OpenCL AlexNet 31.8 129.27x10−3 21.88 8.89x10−3

[28] Virtex7
485t HLS LeNet-5 5.2 9.22x10−3 909.09 1.61

[28] Virtex7
485t HLS LeNet-5 6.0 10.45x10−3 1041.66 1.81

[3] Zynq
UltraScale+ HLS LeNet-5 NA NA 5780.34 2.51

[4] Virtex7
VX485T HLS AlexNet 61.62 22.0x10−3 46.27 1.65x10−3

Model 1.a Zynq
Z-7020 RTL LeNet 2.99 20.78x10−3 2923.97 20.30

Model 2.a Zynq
Z-7020 RTL LeNet-5 2.25 19.56x10−3 1004.02 8.73

Model 2.b Zynq
Z-7020 RTL LeNet-5 0.148 29.6x10−3 69.10 13.82

less DSP slices and ∼48x less BRAM units compared to
[28] and can process 69.1 frames per second (FPS) at 13.82
FPS/DSP which is ∼8x more compared to [28]. Both models
2.a and 2.b have the best FPS/DSP value compared to [3],
[4], [27], [28]. Model 1.a is configured for the same accuracy
as LeNet-5 for the comparison in table VI and it shows the
best throughput of all the models in terms of FPS/DSP with
at least ∼6x times less parameter count compared to all the
models shown in table VI. Only [27] shows better throughput
in terms of GOP/s/DSP compared to our models but models
1.a, 2.a and 2.b has 228x, 98x and 155x increase in FPS/DSP
value respectively compared to the best possible value of [27].

V. CONCLUSION

In this work, a hardware design is proposed to optimize
the hardware implementation on resource-constrained devices
and an automated hardware code generator is implemented.
This design is able to ensure the best throughput and reduced
execution time without adversely affecting resource utilization,
with the help of intra and inter-layer pipelining, limited
channel level parallelism, efficient use of on-chip BRAMs,
adaptive data processing, and bit-width quantization strate-
gies. Experimental results show that this design shows better
performance in terms of throughput and resource utilization
compared to the related works.
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