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Abstract: Floating point multiplication is one of the crucial 

operations in many application domains such as image processing, 
signal processing etc. But every application requires different 
working features. Some need high precision, some need low power 
consumption, low latency etc. But IEEE-754 format is not really 
flexible for these specifications and also design is complex. Optimal 
run-time reconfigurable hardware implementations may need the use 
of custom floating-point formats that do not necessarily follow IEEE 
specified sizes. In this paper, we present a run-time-reconfigurable 
floating point multiplier implemented on FPGA with custom floating 
point format for different applications. This floating point multiplier 
can have 6 modes of operations depending on the accuracy or 
application requirement. With the use of optimal design with custom 
IPs (Intellectual Properties), a better implementation is done by 
truncating the inputs before multiplication. And a combination of 
Karatsuba algorithm and Urdhva-Tiryagbhyam algorithm (Vedic 
Mathematics) is used to implement unsigned binary multiplier. This 
further increases the efficiency of the multiplier. 

Keywords: fpga, Run-time-reconfigurable, Variable-precision, 
Floating point multiplier, Vedic mathematics, Urdhva-Tiryagbhyam, 
Karatsuba 

I. INTRODUCTION  
    Floating point multiplication units are essential Intellectual 
Properties (IP) for modern multimedia and high performance 
computing such as graphics acceleration, signal processing, 
image processing etc. There are lot of effort is made over the 
past few decades to improve performance of floating point 
computations. Floating point units are not only complex, but 
also require more area and hence more power consuming as 
compared to fixed point multipliers. And the complexity of the 
floating point unit increases as accuracy becomes a major 
issue. Even a minute error in accuracy can cause major 
consequences. These errors are possible in floating point units 
mainly because of the discrete behavior of the IEEE-754 [1] 
floating point representation, where fixed number of bits is 
used to represent numbers. Due to the high computational 
requirements of scientific applications such as computational 
geometry, climate modeling, computational physics, etc., it is 
necessary to have extreme precision in floating point 
calculations. And these increased precision may not be 

provided with single precision or double precision format. 
That further increases the complexity of the unit. But some 
applications do not require high precision. Even an 
approximate value will be sufficient for the correct operation. 
For applications which require lower precision, the use of 
double precision or quadruple precision floating point units 
will be a luxury. It wastes area, power and also increases 
latency. 
    For devices such as portable or wearable devices in which 
accuracy requirement varies with different applications and 
also power consumption is a very important factor, use of high 
precision floating point multipliers is not a good option. In 
such cases a variable precision multiplier will be a good 
option which can save much power and time when application 
doesn’t need high precision. There are a lot of such models 
like [2], [3] and [4]. Most of such designs make use of already 
available IPs such as DSP (Digital Signal Processing) units 
and 18x18 multiplier units. In this proposed paper, we present 
a power efficient design of floating point multiplier with 
different modes of accuracy selection. With different precision 
modes, we can select the mode which is appropriate for the 
concerned application. As accuracy requirement decreases, the 
width of multiplier decreases and hence the power 
consumption and latency.  

II. PROPOSED MODEL 
    The proposed model is a reconfigurable multi-precision 
floating point multiplier which can be operated in six different 
modes according to the accuracy requirements. It can perform 
floating point format multiplication of different mantissa sizes 
depending on the precision requirement. The basic unit is a 
Double-precision floating point unit. According to the 
precision selected, the size of the mantissa is varied. Fig. 1 
shows the floating-point multiplication format used in the 
proposed model.   
    The multiplier accepts two inputs each of 67-bit wide. The 
first 3 bits are used for mode selection. The inputs to the 
multiplier can be given in double-precision floating point 
format with first 3 bits (66th bit to 64th bit) as mode select bits.  
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The value of the mode select bits for both t
the same, otherwise a mode select erro
generated and the execution will be stopp
mode select bit combinations for different m
table 1. 

The different modes in the proposed multi-pr
are the following. 
Mode 1: Mode 1 is auto mode, i.e. the co
select the optimum mode by analyzing the in
execution. The optimum mode is selected
number of zeroes after a leading 1. If the num
or more after a leading 1, then the bits up to
counted. If the number of bits up to that lead
8, then mode 2 or 8-bit mantissa mode will 
number of bits before the leading 1 is les
mantissa mode will be selected and so on.  
Mode 2: This is a custom precision forma
double-precision floating point multiplier wi
of 8-bit. 
Mode 3: This is a custom precision forma
double-precision floating point multiplier wi
of 16-bit. 
Mode 4: This is a custom precision forma
double-precision floating point multiplier wi
of 23-bit. 
Mode 5: This is a custom precision forma
double-precision floating point multiplier wi
of 36-bit. 
Mode 6: This mode is a fully fledged double
point multiplier at the cost of accuracy. 
    The modes with less number of mantissa b
amount of power. These modes are best 
multiplication and also for applications whe
a big issue. Rounding of bits is done before 
every mode except mode 6 and this reduces 
results.  
    A simple block diagram of the proposed m
fig. 2. The custom precision formats with 8
16-bit mantissa are best suited for integ
where fractional accuracy is not an issue. It
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The binary unsigned mu
multiplication is implemented
Karatsuba algorithm [4, 5] 
algorithm, which gives better 
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III. FLOATING PO

    A floating point number is r
[1] as  േݏ ൈ  ܾ௘  or  േ݂݅݊݃݅ݏ
perform multiplication of two  ܾ௘ଵ and േ2ݏ ൈ ܾ௘ଶ, the sign
multiplied to get the produc
added to get the product expon2ݏሻ  ൈ  ܾሺ௘ଵା௘ଶሻ. The hardware 
multiplier is shown in fig. 3.  
The important blocks in the
floating point multiplier is desc

A. Sign Calculation 
    The MSB of floating point 
The sign of the product will b
are of same sign and will b
opposite sign. So, to obtain the
a simple XOR gate as the sign 

B. Addition of Exponents 
    To get the product exponent
together. Since we use a bia
exponent, we need to subtra
exponents to get the actual e127ଵ଴ (01111111ଶ) for s1023ଵ଴(0111111111ଶ) for 
proposed custom precision for
The computational time of man
much more than the exponen
carry adder and ripple borr
exponent addition. 
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C. Karatsuba-Urdhva Tiryagbhyam binary m
    In floating point multiplication, mos
complex part is the mantissa multiplicatio
operation requires more time compared to ad
number of bits increase, it consumes more 
double precision format, we need a 53x53 bi
single precision format we need 24x24 
requires much time to perform these operat
major contributor to the delay of the floating
To make the multiplication operation more 
faster, the proposed model uses a combina
algorithm and Urdhva Tiryagbhyam algorithm
    Karatsuba algorithm uses a divide and 
where it breaks down the inputs into Most S
Least Significant half and this process co
operands are of 8-bits wide. Karatsuba algor
for operands of higher bit length. But at low
not as efficient as it is at higher bit lengths.
problem, Urdhva Tiryagbhyam algorithm is 
stages. The model of Urdhva-Tiryagbhy
shown in Fig. 4. Urdhva Tiryagbhyam algo
algorithm for binary multiplication in terms 
But as the number of bits increases, delay als
partial products are added in a ripple manner
4-bit multiplication, it requires 6 adders con
manner. And 8-bit multiplication requires 14
Compensating the delay will cause incre
Urdhva Tiryagbhyam algorithm is not th
number of bits is much more. If we use Kara
higher stages and Urdhva Tiryagbhyam al
stages, it can somewhat compensate the limi
algorithms and hence the multiplier becom
The circuit is further optimized by using carr
save adders instead of ripple carry adders.
delay to a great extent with minimal incre
These two algorithms are explained in de
sections. 

Fig. 3 Floating point multiplier 
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Urdhva Tiryagbhyam algorithm
    Urdhva-Tiryagbhyam sutra i
method for multiplication [
applicable to all cases of mult
short and consists of only on
‘Vertically and crosswise’. In U
the number of steps required fo
and hence the speed of multipli
    An illustration of steps for c
bit numbers is shown belowa3a2a1a0 and b3b2b1b0 and 
product. And the temporary par
The partial products are obtain
The line notation of the steps is

Step1: t0ሺ1ܾ݅ݐሻ ൌ a0b0. 
Step2: t1ሺ2ܾ݅ݐሻ ൌ a1b0 ൅ a
Step3: t2ሺ2ܾ݅ݐሻ ൌ a2b0 ൅ a

 Fig. 4 Karatsuba-Urd
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Urdhva Tiryagbhyam algorithm, 
or multiplication can be reduced 
ication is increased. 
computing the product of two 4-
w [9, 10]. The two input are 

let  p7p6p5p4p3p2p1p0 be the 
rtial products are t0, t1, t2, … , t6. 

ned from the steps given below. 
s shown in fig. 5. 

a0b1. a1b1 ൅ a0b2 

 
 

dhva multiplier model 

 
 

rdhva Tiryagbhyam sutra 



Step4: t3ሺ3ܾ݅ݐሻ ൌ a3b0 ൅ a2b1 ൅ a1b2 ൅
Step5: t4ሺ2ܾ݅ݐሻ ൌ a3b1 ൅ a2b2 ൅ a1b3. 
Step6: t5ሺ2ܾ݅ݐሻ ൌ a3b2 ൅ a2b3. 
Step7: t6ሺ1ܾ݅ݐሻ ൌ a3b3 
 

The product is obtained by adding s1, s2 
below, where s1, s2 ܽ݊݀ s3 are the partial sum
 s1 ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ t0 s2 ൌ t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ s3 ൌ t3ሾ2ሿ 
 
Product ൌ t6  t5ሾ0ሿ  t4ሾ0ሿ  t3ሾ0ሿ  t2ሾ0ሿ  t1ሾ0ሿ 
          t5ሾ1ሿ  t4ሾ1ሿ  t3ሾ1ሿ  t2ሾ1ሿ  t1ሾ1ሿ 
                    t3ሾ2ሿ       0          0         0 
 
            p7 p6   p5      p4       p3       p2       p1      
 
This method can be further optimized to red
hardware. A more optimized hardware archi
shown in Fig. 6. This model actually help
need for three operand 7-bit adder and hence
and delay. The adders are connected in ripple

The expressions for product bits are as shownp0 ൌ a0b0 

 
Fig. 6 Hardware architecture for 4x4 U

Tiryagbhyam multiplier. 
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ܽ݊݀ s3 as shown 
m obtained. 

   t0  +    0   +     0      p0 

duce the number of 
itecture [11, 12] is 
s to eliminate the 

e reduces hardware 
e manner.  

n below. 

p1 ൌ ൌ      1 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺa1b0 ݂݋ ܤܵܮ ൅ a0b1ሻ p2 ൌ ൌ      2 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDER1ሻp3 ݂݋ ܤܵܮ ൌ 3 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ
     ൌ ሺMSBሺADDER 2ሻp4 ݂݋ ܤܵܮ ൌ 4ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDERp5 ݂݋ ܤܵܮ ൌ 5ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDp6 ݂݋ ܤܵܮ ൌ 6ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺp7 ݂݋ ܤܵܮ ൌ   ܴܧܦܦܣ ݂݋ ݕݎݎܽܥ
 
Since there are more than two
can use carry save addition to
technique reduces the delay to 
ripple carry adder. 

Karatsuba Algorithm for m
    Karatsuba multiplication alg
multiplying very large number
Anatoli Karatsuba in 1962. It i
in which we divide the numb
half and Least Significant h
performed. Karatsuba algori
multipliers required by replaci
addition operations. Addition
multiplications and hence the s
As the number of bits of input
becomes more efficient. This a
inputs is more than 16 bits. 
Karatsuba algorithm is shown i

Karatsuba algorithm for two in
as follow. 
Productൌ ܺ. ܻ 
X and Y can be written as, 

       ܺ ൌ 2௡/ଶ
       ܻ ൌ 2௡/ଶ
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a great extend compared to the 
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is a divide and conquer method, 
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half and then multiplication is 
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speed of multiplier is increased. 
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algorithm is optimal if width of 

The hardware architecture of 
in Fig. 7.  

nputs X and Y can be explained 

ଶ.  Xl ൅  Xr           (1) ଶ.  Yl ൅  Yr             (2) 

 
 

m of Karatsuba multiplier 



Where  Xl,  Yl and  Xr,  Yr are the Most Significant half and 
Least Significant half of X and Y respectively, and n is the 
number of bits. 
Then,  ܺ. ܻ ൌ ቀ2೙మ.  Xl ൅  Xrቁ . ሺ2೙మ.  Yl ൅  Yrሻ 
             ൌ 2௡.  Xl Yl ൅ 2௡/ଶ ሺ Xl Yr ൅  Xr Ylሻ ൅  Xr Yr             (3) 

 
The Second term in equation (3) can be optimized to reduce 
the number of multiplication operations.  
i.e.;     Xl Yr ൅  Xr Yl ൌ ሺ Xl ൅  Xrሻሺ Yl ൅  Yrሻ െ  Xl Yl െ  Xr Yr 
               (4) 
The equation (3) can be re-written as, ܺ. ܻ ൌ 2௡.  Xl Yl ൅  Xr Yr ൅ 2೙మ ሺሺ Xl ൅  Xrሻሺ Yl ൅  Yrሻ 
      െ Xl Yl െ  Xr Yrሻ                             
(5) 
 
The recurrence of Karatsuba algorithm is, ܶሺ݊ሻ ൌ 3ܶ ቀ௡ଶቁ ൅ ܱሺ݊ሻ  ܱሺ݊ଵ.ହ଼ହሻ           (6) 

D. Normalization of the result 
    Floating point representations have a hidden bit in the 
mantissa, which always has a value 1 and hence it is not stored 
in the memory to save one bit. A leading 1 in the mantissa is 
considered to be the hidden bit, i.e. the 1 just immediate to the 
left of decimal point. Usually normalization is done by 
shifting, so that the MSB of mantissa becomes nonzero and in 
radix 2, nonzero means 1. The decimal point in the mantissa 
multiplication result is shifted left if the leading 1 is not at the 
immediate left of decimal point. And for each left shift 
operation of the result, the exponent value is incremented by 
one. This is called normalization of the result. Since the value 
of hidden bit is always 1, it is called ‘hidden 1’. 

E. Representation of exceptions 
    Some of the numbers cannot be represented with a 
normalized significand. To represent those numbers a special 
code is assigned to it. In the proposed model, we use four 
output signals namely Zero, Infinity, NaN (Not-a-number) and 
Denormal to represent these exceptions. If the product has  ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 0 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ൌ 0, then the result 
is taken as Zero (±0). If the product has  ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ255 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ൌ 0, then the result is taken as Infinity 
(∞). If the product has  ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 255 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0, then the 
result is taken as NaN. Denormalized values or Denormals are 
numbers without a hidden 1 and with the smallest possible 
exponent. Denormals are used to represent certain small 
numbers that cannot be represented as normalized numbers. If 
the product has  ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 0 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0, 
then the result is represented as Denormal. Denaormal is 
represented as േ0. s ൈ 2ିଵଶ଺ , where s is the significand. 
 

IV. IMPLIMENTATION AND RESULTS 
    The main objective of this work is to design and implement 
a floating point variable-precision circuit such that the device 

can reconfigure itself according to the precision requirements 
and can operate at high speed irrespective of accuracy and 
consume less power where accuracy is not an issue. Since 
mantissa multiplication is the most complex part in the 
floating point multiplier, we designed a multiplier which can 
operate at high speed and increase in delay and area is 
significantly less with increasing number of bits. The floating 
point multipliers of different modes with IEEE-754 standard 
format and custom precision format is implemented separately 
using Verilog HDL and tested. The binary multiplier unit 
(Karatsuba-Urdhva) are further optimized by replacing simple 
adders with efficient adders like carry select adders and carry 
save adders. The proposed model is implemented, synthesized 
and simulated using Xilinx Synthesis Tools (ISE 14.7) 
targeted on Virtex4 family. The model operates in a selected 
mode only and during operation, only the selected multiplier 
unit will be in ON state and all other multipliers units will be 
in OFF state. Hence, if a low precision mode is selected, the 
area and hence the power consumption will be less. The 
summary of results is given in table II and table III. 
Comparison with various multiplier units is given in tables IV, 
V, VI, VII and VIII. 
 

TABLE II - Performance analysis of Karatsuba-Urdhva 
multipliers in the proposed model 

  
 8-bit 

multiplier 
16-bit 

multiplier 
24-bit 

multiplier 
32-bit 

multiplier 

Slices 113 410 972 1389 

LUTs 120 451 1018 1545 

IOBs 33 65 97 129 

Delay 9.396ns 11.514ns 12.996ns 13.141ns 

௠݂௔௫ 
(MHz) 

274.469 248.964 226.508 209.606 

Logic 
levels 

14 22 31 39 

TABLE III – Performance analysis of floating point units in the 
proposed model 

 
 8-bit 

precision 
floating 

point 
multiplier 

16-bit 
precision 
floating 

point 
multiplier 

23-bit 
precision 
floating 

point 
multiplier 

Double 
precision 
floating 

point 
multiplier 

Slices 157 475 977 3877 
LUTs 220 584 1073 4033 

IOBs 61 83 104 193 

Delay 12.254ns 14.577ns 16.392ns 18.966ns 

௠݂௔௫ 
(MHz) 

264.767 240.955 226.508 173.952 

 



V. CONCLUSION AND FUTURE WORK 
    This paper describes a method to effectively adjust the 
delay and power consumption for different accuracy 
requirements. Also the paper shows how to effectively reduce 
the percentage increase in delay and area of a floating point 
multiplier with increase in number of bits by using a very 
efficient combination of Karatsuba and Urdhva-Tiryagbhyam 
algorithms. The model can be further optimized in terms of 

delay by using pipelining methods and precision of the result 
can be increased by adding efficient truncation and rounding 
methods. 
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TABLE IV - Delay comparison of various 8-bit multipliers with 
proposed Karatsuba-Urdhva multiplier 

 
 Ref [9] Ref [12] Ref [13] Proposed 

multiplier 
Width 8-bit 8-bit 8-bit 8-bit 

Delay 28.27ns 15.050ns 23.973ns 9.396ns 

 
TABLE V - Delay comparison of various 16-bit multipliers with 

proposed Karatsuba-Urdhva multiplier 
 

 Ref [14]-vedic 
multiplier 

Ref [15] Proposed 
multiplier 

Width 16-bit 16-bit 16-bit 

Delay 13.452ns 27.148ns 11.514ns 

 
TABLE VI - Delay and area comparison of 24-bit multipliers 

with proposed Karatsuba-Urdhva multiplier 
 

 Slices  LUTs Delay 
Ref [16] 1306 2329 16.316ns 

Proposed 
multiplier 

972 1018 12.996ns 

 
TABLE VII - Delay and area comparison of 32-bit multipliers 

with proposed Karatsuba-Urdhva multiplier 
 

 LUTs Delay 

Ref [14]- Modified Booth 
multiplier (Radix-8) 

2721 12.081ns 

Ref [14]- Modified Booth 
multiplier (Radix-16) 

7161 11.564ns 

Ref [14] 2704 9.536ns 

Proposed multiplier 1545 13.141ns 

 
TABLE VIII - Delay and area comparison of SP-floating point 

multiplier with proposed SP FP multiplier 
 

 Slices  LUTs Delay 
Ref [16] 1269 2270 18.783ns 

Ref [8] 1149 1146 -- 

Proposed 
multiplier 

976 1091 16.392ns 
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