
Run-time reconfigurable multi-precision floating
point multiplier design for high speed, low-power

applications

Abstract: Floating point multiplication is one of the crucial

operations in many application domains such as image processing,
signal processing etc. But every application requires different
working features. Some need high precision, some need low power
consumption, low latency etc. But IEEE-754 format is not really
flexible for these specifications and also design is complex. Optimal
run-time reconfigurable hardware implementations may need the use
of custom floating-point formats that do not necessarily follow IEEE
specified sizes. In this paper, we present a run-time-reconfigurable
floating point multiplier implemented on FPGA with custom floating
point format for different applications. This floating point multiplier
can have 6 modes of operations depending on the accuracy or
application requirement. With the use of optimal design with custom
IPs (Intellectual Properties), a better implementation is done by
truncating the inputs before multiplication. And a combination of
Karatsuba algorithm and Urdhva-Tiryagbhyam algorithm (Vedic
Mathematics) is used to implement unsigned binary multiplier. This
further increases the efficiency of the multiplier.

Keywords: fpga, Run-time-reconfigurable, Variable-precision,
Floating point multiplier, Vedic mathematics, Urdhva-Tiryagbhyam,
Karatsuba

I. INTRODUCTION
 Floating point multiplication units are essential Intellectual
Properties (IP) for modern multimedia and high performance
computing such as graphics acceleration, signal processing,
image processing etc. There are lot of effort is made over the
past few decades to improve performance of floating point
computations. Floating point units are not only complex, but
also require more area and hence more power consuming as
compared to fixed point multipliers. And the complexity of the
floating point unit increases as accuracy becomes a major
issue. Even a minute error in accuracy can cause major
consequences. These errors are possible in floating point units
mainly because of the discrete behavior of the IEEE-754 [1]
floating point representation, where fixed number of bits is
used to represent numbers. Due to the high computational
requirements of scientific applications such as computational
geometry, climate modeling, computational physics, etc., it is
necessary to have extreme precision in floating point
calculations. And these increased precision may not be

provided with single precision or double precision format.
That further increases the complexity of the unit. But some
applications do not require high precision. Even an
approximate value will be sufficient for the correct operation.
For applications which require lower precision, the use of
double precision or quadruple precision floating point units
will be a luxury. It wastes area, power and also increases
latency.
 For devices such as portable or wearable devices in which
accuracy requirement varies with different applications and
also power consumption is a very important factor, use of high
precision floating point multipliers is not a good option. In
such cases a variable precision multiplier will be a good
option which can save much power and time when application
doesn’t need high precision. There are a lot of such models
like [2], [3] and [4]. Most of such designs make use of already
available IPs such as DSP (Digital Signal Processing) units
and 18x18 multiplier units. In this proposed paper, we present
a power efficient design of floating point multiplier with
different modes of accuracy selection. With different precision
modes, we can select the mode which is appropriate for the
concerned application. As accuracy requirement decreases, the
width of multiplier decreases and hence the power
consumption and latency.

II. PROPOSED MODEL
 The proposed model is a reconfigurable multi-precision
floating point multiplier which can be operated in six different
modes according to the accuracy requirements. It can perform
floating point format multiplication of different mantissa sizes
depending on the precision requirement. The basic unit is a
Double-precision floating point unit. According to the
precision selected, the size of the mantissa is varied. Fig. 1
shows the floating-point multiplication format used in the
proposed model.
 The multiplier accepts two inputs each of 67-bit wide. The
first 3 bits are used for mode selection. The inputs to the
multiplier can be given in double-precision floating point
format with first 3 bits (66th bit to 64th bit) as mode select bits.

R.K.Sharma

School of VLSI Design and Embedded Systems
National Institute of Technology Kurukshetra

Kurukshetra, India
rksharama@nitkkr.ac.in

Arish S

School of VLSI design and Embedded Systems
National Institute of Technology Kurukshetra

Kurukshetra, India
arishsu@gmail.com

Cite as: S. Arish and R. K. Sharma, "Run-time reconfigurable multi-precision floating point multiplier design for high speed, low-power applications,"
2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 2015, pp. 902-907. doi: 10.1109/SPIN.2015.7095315

The value of the mode select bits for both t
the same, otherwise a mode select erro
generated and the execution will be stopp
mode select bit combinations for different m
table 1.

The different modes in the proposed multi-pr
are the following.
Mode 1: Mode 1 is auto mode, i.e. the co
select the optimum mode by analyzing the in
execution. The optimum mode is selected
number of zeroes after a leading 1. If the num
or more after a leading 1, then the bits up to
counted. If the number of bits up to that lead
8, then mode 2 or 8-bit mantissa mode will
number of bits before the leading 1 is les
mantissa mode will be selected and so on.
Mode 2: This is a custom precision forma
double-precision floating point multiplier wi
of 8-bit.
Mode 3: This is a custom precision forma
double-precision floating point multiplier wi
of 16-bit.
Mode 4: This is a custom precision forma
double-precision floating point multiplier wi
of 23-bit.
Mode 5: This is a custom precision forma
double-precision floating point multiplier wi
of 36-bit.
Mode 6: This mode is a fully fledged double
point multiplier at the cost of accuracy.
 The modes with less number of mantissa b
amount of power. These modes are best
multiplication and also for applications whe
a big issue. Rounding of bits is done before
every mode except mode 6 and this reduces
results.
 A simple block diagram of the proposed m
fig. 2. The custom precision formats with 8
16-bit mantissa are best suited for integ
where fractional accuracy is not an issue. It

3 1 11 52

 Mode Sign Exponent Manti
 select

Fig. 1 Floating point format used in the prop

TABLE I - Different modes
Mode Mode selec

Mode 1(Auto Mode)
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6

000
001
010
011
100
101

the inputs must be
or signal will be
ped. The different
modes is shown in

recision multiplier

ntroller itself will
nputs and will start
d by counting the
mber of zeroes is 6
o that leading 1 is
ding 1 is less than
be selected. If the

ss than 16, 16-bit

at. It uses a basic
ith a mantissa size

at. It uses a basic
ith a mantissa size

at. It uses a basic
ith a mantissa size

at. It uses a basic
ith a mantissa size

-precision floating

bits consumes less
suited for integer

ere accuracy is not
multiplication for
huge variations in

model is shown in
8-bit mantissa and
er multiplications
t can also be used

for low value fractional mu
integer value as result. By usi
instead of a fully-fledged do
multiplier can save a lot of pow
The binary unsigned mu
multiplication is implemented
Karatsuba algorithm [4, 5]
algorithm, which gives better

and area.

III. FLOATING PO

 A floating point number is r
[1] as േݏ ൈ ܾ௘ or േ݂݅݊݃݅ݏ
perform multiplication of two ܾ௘ଵ and േ2ݏ ൈ ܾ௘ଶ, the sign
multiplied to get the produc
added to get the product expon2ݏሻ ൈ ܾሺ௘ଵା௘ଶሻ. The hardware
multiplier is shown in fig. 3.
The important blocks in the
floating point multiplier is desc

A. Sign Calculation
 The MSB of floating point
The sign of the product will b
are of same sign and will b
opposite sign. So, to obtain the
a simple XOR gate as the sign

B. Addition of Exponents
 To get the product exponent
together. Since we use a bia
exponent, we need to subtra
exponents to get the actual e127ଵ଴ (01111111ଶ) for s1023ଵ଴(0111111111ଶ) for
proposed custom precision for
The computational time of man
much more than the exponen
carry adder and ripple borr
exponent addition.

Fig. 2 Block diagram

issa

posed model

ct bits

ultiplication which require an
ing 8-bit and 16-bit multipliers
ouble precision floating point
wer and can increase the speed.

ultiplier used for mantissa
d by using a combination of
and Urdhva-Tiryagbhyam [6]
optimization in terms of speed

OINT MULTIPLIER
represented in IEEE-754 format ݂݅ܿܽ݊݀ ൈ ௘௫௣௢௡௘௡௧݁ݏܾܽ [7]. To
floating point numbers േ1ݏ ൈ

nificant or mantissa parts are
ct mantissa and exponents are
nent. i.e.; the product is േሺ1ݏ ൈ
block diagram of floating point

e implementation of proposed
cribed below [8].

number represents the sign bit.
be positive if both the numbers
be negative if numbers are of
e sign of the product, we can use
calculator.

t, the input exponents are added
as in the floating point format
act the bias from the sum of
exponent. The value of bias is
single precision format and
double precision format. In

rmat also, a bias of 127 is used.
ntissa multiplication operation is
nt addition. So a simple ripple
row subtracter is optimal for

m of the proposed model

C. Karatsuba-Urdhva Tiryagbhyam binary m
 In floating point multiplication, mos
complex part is the mantissa multiplicatio
operation requires more time compared to ad
number of bits increase, it consumes more
double precision format, we need a 53x53 bi
single precision format we need 24x24
requires much time to perform these operat
major contributor to the delay of the floating
To make the multiplication operation more
faster, the proposed model uses a combina
algorithm and Urdhva Tiryagbhyam algorithm
 Karatsuba algorithm uses a divide and
where it breaks down the inputs into Most S
Least Significant half and this process co
operands are of 8-bits wide. Karatsuba algor
for operands of higher bit length. But at low
not as efficient as it is at higher bit lengths.
problem, Urdhva Tiryagbhyam algorithm is
stages. The model of Urdhva-Tiryagbhy
shown in Fig. 4. Urdhva Tiryagbhyam algo
algorithm for binary multiplication in terms
But as the number of bits increases, delay als
partial products are added in a ripple manner
4-bit multiplication, it requires 6 adders con
manner. And 8-bit multiplication requires 14
Compensating the delay will cause incre
Urdhva Tiryagbhyam algorithm is not th
number of bits is much more. If we use Kara
higher stages and Urdhva Tiryagbhyam al
stages, it can somewhat compensate the limi
algorithms and hence the multiplier becom
The circuit is further optimized by using carr
save adders instead of ripple carry adders.
delay to a great extent with minimal incre
These two algorithms are explained in de
sections.

Fig. 3 Floating point multiplier

multiplier
st important and
on. Multiplication
ddition. And as the

area and time. In
it multiplier and in
bit multiplier. It

tions and it is the
g point multiplier.
area efficient and

ation of Karatsuba
m.
conquer approach
ignificant half and
ontinues until the
rithm is best suited

wer bit lengths, it is
. To eliminate this
used at the lower

yam algorithm is
orithm is the best
of area and delay.
so increases as the
r. For example, for
nnected in a ripple
4 adders and so on.
ease in area. So

hat optimal if the
atsuba algorithm at
lgorithm at lower
itations in both the

mes more efficient.
ry select and carry
 This reduces the
ease in hardware.

etail in the below

Urdhva Tiryagbhyam algorithm
 Urdhva-Tiryagbhyam sutra i
method for multiplication [
applicable to all cases of mult
short and consists of only on
‘Vertically and crosswise’. In U
the number of steps required fo
and hence the speed of multipli
 An illustration of steps for c
bit numbers is shown belowa3a2a1a0 and b3b2b1b0 and
product. And the temporary par
The partial products are obtain
The line notation of the steps is

Step1: t0ሺ1ܾ݅ݐሻ ൌ a0b0.
Step2: t1ሺ2ܾ݅ݐሻ ൌ a1b0 ൅ a
Step3: t2ሺ2ܾ݅ݐሻ ൌ a2b0 ൅ a

 Fig. 4 Karatsuba-Urd

Fig. 5 Line notation of Ur

m for multiplication
is an ancient Vedic mathematics
[6]. It is a general formula
tiplication. The formula is very
ne compound word and means
Urdhva Tiryagbhyam algorithm,
or multiplication can be reduced
ication is increased.
computing the product of two 4-
w [9, 10]. The two input are

let p7p6p5p4p3p2p1p0 be the
rtial products are t0, t1, t2, … , t6.

ned from the steps given below.
s shown in fig. 5.

a0b1. a1b1 ൅ a0b2

dhva multiplier model

rdhva Tiryagbhyam sutra

Step4: t3ሺ3ܾ݅ݐሻ ൌ a3b0 ൅ a2b1 ൅ a1b2 ൅
Step5: t4ሺ2ܾ݅ݐሻ ൌ a3b1 ൅ a2b2 ൅ a1b3.
Step6: t5ሺ2ܾ݅ݐሻ ൌ a3b2 ൅ a2b3.
Step7: t6ሺ1ܾ݅ݐሻ ൌ a3b3

The product is obtained by adding s1, s2
below, where s1, s2 ܽ݊݀ s3 are the partial sum
 s1 ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ t0 s2 ൌ t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ s3 ൌ t3ሾ2ሿ

Product ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ
 t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ
 t3ሾ2ሿ 0 0 0

 p7 p6 p5 p4 p3 p2 p1

This method can be further optimized to red
hardware. A more optimized hardware archi
shown in Fig. 6. This model actually help
need for three operand 7-bit adder and hence
and delay. The adders are connected in ripple

The expressions for product bits are as shownp0 ൌ a0b0

Fig. 6 Hardware architecture for 4x4 U

Tiryagbhyam multiplier.

൅ a0b3.
ܽ݊݀ s3 as shown
m obtained.

 t0 + 0 + 0 p0

duce the number of
itecture [11, 12] is
s to eliminate the

e reduces hardware
e manner.

n below.

p1 ൌ ൌ 1 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺa1b0 ݂݋ ܤܵܮ ൅ a0b1ሻ p2 ൌ ൌ 2 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDER1ሻp3 ݂݋ ܤܵܮ ൌ 3 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ
 ൌ ሺMSBሺADDER 2ሻp4 ݂݋ ܤܵܮ ൌ 4ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDERp5 ݂݋ ܤܵܮ ൌ 5ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDp6 ݂݋ ܤܵܮ ൌ 6ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺp7 ݂݋ ܤܵܮ ൌ ܴܧܦܦܣ ݂݋ ݕݎݎܽܥ

Since there are more than two
can use carry save addition to
technique reduces the delay to
ripple carry adder.

Karatsuba Algorithm for m
 Karatsuba multiplication alg
multiplying very large number
Anatoli Karatsuba in 1962. It i
in which we divide the numb
half and Least Significant h
performed. Karatsuba algori
multipliers required by replaci
addition operations. Addition
multiplications and hence the s
As the number of bits of input
becomes more efficient. This a
inputs is more than 16 bits.
Karatsuba algorithm is shown i

Karatsuba algorithm for two in
as follow.
Productൌ ܺ. ܻ
X and Y can be written as,

 ܺ ൌ 2௡/ଶ
 ܻ ൌ 2௡/ଶ

Urdhva

Fig. 7 Block diagram

1ሻ൯ 2ሻ൯ ሻ൅a2b0 ൅ a1b1 ൅ a0b2ሻ 3ሻ൯ ሻ൅a3b0 ൅ a2b1 ൅ a1b2 ൅ a0b3ሻ 4ሻ൯ R1ሻ൅a3b1 ൅ a2b2 ൅ a1b3ሻ 5ሻ൯ DER1ሻ൅a3b2 ൅ a2b3ሻ 6ሻ൯ ሺADDER1ሻ൅a3b3ሻ

o operands in adders 2 to 5, we
 implement adders 2 to 5. This
a great extend compared to the

ultiplication
gorithm [4, 5] is best suited for
rs. This method is discovered by
is a divide and conquer method,
bers into their Most Significant
half and then multiplication is
thm reduces the number of
ing multiplication operations by
ns operations are faster than
speed of multiplier is increased.
ts increase, Karatsuba algorithm
algorithm is optimal if width of

The hardware architecture of
in Fig. 7.

nputs X and Y can be explained

ଶ. Xl ൅ Xr (1) ଶ. Yl ൅ Yr (2)

m of Karatsuba multiplier

Where Xl, Yl and Xr, Yr are the Most Significant half and
Least Significant half of X and Y respectively, and n is the
number of bits.
Then, ܺ. ܻ ൌ ቀ2೙మ. Xl ൅ Xrቁ . ሺ2೙మ. Yl ൅ Yrሻ
 ൌ 2௡. Xl Yl ൅ 2௡/ଶ ሺ Xl Yr ൅ Xr Ylሻ ൅ Xr Yr (3)

The Second term in equation (3) can be optimized to reduce
the number of multiplication operations.
i.e.; Xl Yr ൅ Xr Yl ൌ ሺ Xl ൅ Xrሻሺ Yl ൅ Yrሻ െ Xl Yl െ Xr Yr
 (4)
The equation (3) can be re-written as, ܺ. ܻ ൌ 2௡. Xl Yl ൅ Xr Yr ൅ 2೙మ ሺሺ Xl ൅ Xrሻሺ Yl ൅ Yrሻ
 െ Xl Yl െ Xr Yrሻ
(5)

The recurrence of Karatsuba algorithm is, ܶሺ݊ሻ ൌ 3ܶ ቀ௡ଶቁ ൅ ܱሺ݊ሻ ܱሺ݊ଵ.ହ଼ହሻ (6)

D. Normalization of the result
 Floating point representations have a hidden bit in the
mantissa, which always has a value 1 and hence it is not stored
in the memory to save one bit. A leading 1 in the mantissa is
considered to be the hidden bit, i.e. the 1 just immediate to the
left of decimal point. Usually normalization is done by
shifting, so that the MSB of mantissa becomes nonzero and in
radix 2, nonzero means 1. The decimal point in the mantissa
multiplication result is shifted left if the leading 1 is not at the
immediate left of decimal point. And for each left shift
operation of the result, the exponent value is incremented by
one. This is called normalization of the result. Since the value
of hidden bit is always 1, it is called ‘hidden 1’.

E. Representation of exceptions
 Some of the numbers cannot be represented with a
normalized significand. To represent those numbers a special
code is assigned to it. In the proposed model, we use four
output signals namely Zero, Infinity, NaN (Not-a-number) and
Denormal to represent these exceptions. If the product has ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 0 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ൌ 0, then the result
is taken as Zero (±0). If the product has ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ255 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ൌ 0, then the result is taken as Infinity
(∞). If the product has ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 255 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0, then the
result is taken as NaN. Denormalized values or Denormals are
numbers without a hidden 1 and with the smallest possible
exponent. Denormals are used to represent certain small
numbers that cannot be represented as normalized numbers. If
the product has ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 0 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0,
then the result is represented as Denormal. Denaormal is
represented as േ0. s ൈ 2ିଵଶ଺ , where s is the significand.

IV. IMPLIMENTATION AND RESULTS
 The main objective of this work is to design and implement
a floating point variable-precision circuit such that the device

can reconfigure itself according to the precision requirements
and can operate at high speed irrespective of accuracy and
consume less power where accuracy is not an issue. Since
mantissa multiplication is the most complex part in the
floating point multiplier, we designed a multiplier which can
operate at high speed and increase in delay and area is
significantly less with increasing number of bits. The floating
point multipliers of different modes with IEEE-754 standard
format and custom precision format is implemented separately
using Verilog HDL and tested. The binary multiplier unit
(Karatsuba-Urdhva) are further optimized by replacing simple
adders with efficient adders like carry select adders and carry
save adders. The proposed model is implemented, synthesized
and simulated using Xilinx Synthesis Tools (ISE 14.7)
targeted on Virtex4 family. The model operates in a selected
mode only and during operation, only the selected multiplier
unit will be in ON state and all other multipliers units will be
in OFF state. Hence, if a low precision mode is selected, the
area and hence the power consumption will be less. The
summary of results is given in table II and table III.
Comparison with various multiplier units is given in tables IV,
V, VI, VII and VIII.

TABLE II - Performance analysis of Karatsuba-Urdhva
multipliers in the proposed model

 8-bit

multiplier
16-bit

multiplier
24-bit

multiplier
32-bit

multiplier

Slices 113 410 972 1389

LUTs 120 451 1018 1545

IOBs 33 65 97 129

Delay 9.396ns 11.514ns 12.996ns 13.141ns

௠݂௔௫
(MHz)

274.469 248.964 226.508 209.606

Logic
levels

14 22 31 39

TABLE III – Performance analysis of floating point units in the
proposed model

 8-bit

precision
floating

point
multiplier

16-bit
precision
floating

point
multiplier

23-bit
precision
floating

point
multiplier

Double
precision
floating

point
multiplier

Slices 157 475 977 3877
LUTs 220 584 1073 4033

IOBs 61 83 104 193

Delay 12.254ns 14.577ns 16.392ns 18.966ns

௠݂௔௫
(MHz)

264.767 240.955 226.508 173.952

V. CONCLUSION AND FUTURE WORK
 This paper describes a method to effectively adjust the
delay and power consumption for different accuracy
requirements. Also the paper shows how to effectively reduce
the percentage increase in delay and area of a floating point
multiplier with increase in number of bits by using a very
efficient combination of Karatsuba and Urdhva-Tiryagbhyam
algorithms. The model can be further optimized in terms of

delay by using pipelining methods and precision of the result
can be increased by adding efficient truncation and rounding
methods.

REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.
[2] K. Manolopoulos, D. Reisis, V.A. Chouliaras, “An Efficient Multiple

Precision Floating-Point Multiplier”, 18th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pp. 153-156,
2011

[3] Claudio Brunelli, Perttu Salmela, Jarmo Takala and Jari Nurmi , “A
Flexible Multiplier for Media Processing”, IEEE workshop on Signal
processing System Design and Implementation, pp. 70-74, 2005

[4] N.Anane, H.Bessalah, M.Issad, K.Messaoudi, “Hardware
implementation of Variable Precision Multiplication on FPGA”, 4th
International Conference on Design & Technology of Integrated
Systems in Nanoscale Era, pp. 77-81, 2009

[5] Anand Mehta, C. B. Bidhul, Sajeevan Joseph, Jayakrishnan. P,
“Implementation of Single Precision Floating Point Multiplier using
Karatsuba Algorithm”, 2013 International Conference on Green
Computing, Communication and Conservation of Energy (ICGCE), pp.
254-256, 2013

[6] “Vedic mathematics”, Swami Sri Bharati Krsna Thirthaji Maharaja,
Motilal Banarasidass Indological publishers and Book sellers, 1965

[7] Computer Arithmetic, Behrooz Parhami, Oxford University Press, 2000.
[8] B. Jeevan , S. Narender , C.V. Krishna Reddy, K. Sivani, “A High Speed

Binary Floating Point Multiplier Using Dadda Algorithm”, International
Multi-Conference on Automation, Computing, Communication, Control
and Compressed Sensing, pp. 455-460, 2013

[9] Poornima M, Shivaraj Kumar Patil, Shivukumar , Shridhar K P , Sanjay
H, “Implementation of Multiplier using Vedic Algorithm”, International
Journal of Innovative Technology and Exploring Engineering (IJITEE),
ISSN: 2278-3075, Volume-2, Issue-6, pp. 219-223, May 2013

[10] R. Sridevi, Anirudh Palakurthi, Akhila Sadhula, Hafsa Mahreen,
“Design of a High Speed Multiplier (Ancient Vedic Mathematics
Approach)”, International Journal of Engineering Research (ISSN :
2319-6890), Volume No.2, Issue No.3, pp : 183-186, July 2013

[11] Harpreet Singh Dhillon, Abhijit Mitra, “A Reduced-Bit Multiplication
Algorithm for Digital Arithmetic”, World Academy of Science,
Engineering and Technology, Vol 19, pp. 719-724, 2008

[12] Premananda B.S., Samarth S. Pai, Shashank B., Shashank S. Bhat,
“Design and Implementation of 8-Bit Vedic Multiplier”, International
Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, Vol. 2, Issue 12, pp. 5877-5882, December
2013

[13] R. Sai Siva Teja, A. Madhusudhan, “FPGA Implementation of Low-
Area Floating Point Multiplier Using Vedic Mathematics”, International
Journal of Emerging Technology and Advanced Engineering, ISSN
2250-2459, Volume 3, Issue 12, pp. 362-366, December 2013.

[14] Jagadeshwar Rao M, Sanjay Dubey, “A High Speed and Area Efficient
Booth Recoded Wallace Tree Multiplier for fast Arithmetic Circuits”,
2012 Asia Pacific Conference on Postgraduate Research in
Microelectronics & Electronics (PRIMEASIA), pp. 220-223, 2012.

[15] R.K. Bathija, R.S. Meena, S. Sarkar, Rajesh Sahu, “Low Power High
Speed 16x16 bit Multiplier using Vedic Mathematics”, International
Journal of Computer Applications (0975 – 8887), Volume 59– No.6, pp.
41-44, December 2012

[16] Anna Jain, Baisakhy Dash, Ajit Kumar Panda, Muchharla Suresh,
“FPGA Design of a Fast 32-bit Floating Point Multiplier Unit”,
International Conference on Devices, Circuits and Systems (ICDCS), pp.
545-547, 2012

TABLE IV - Delay comparison of various 8-bit multipliers with
proposed Karatsuba-Urdhva multiplier

 Ref [9] Ref [12] Ref [13] Proposed

multiplier
Width 8-bit 8-bit 8-bit 8-bit

Delay 28.27ns 15.050ns 23.973ns 9.396ns

TABLE V - Delay comparison of various 16-bit multipliers with

proposed Karatsuba-Urdhva multiplier

 Ref [14]-vedic
multiplier

Ref [15] Proposed
multiplier

Width 16-bit 16-bit 16-bit

Delay 13.452ns 27.148ns 11.514ns

TABLE VI - Delay and area comparison of 24-bit multipliers

with proposed Karatsuba-Urdhva multiplier

 Slices LUTs Delay
Ref [16] 1306 2329 16.316ns

Proposed
multiplier

972 1018 12.996ns

TABLE VII - Delay and area comparison of 32-bit multipliers

with proposed Karatsuba-Urdhva multiplier

 LUTs Delay

Ref [14]- Modified Booth
multiplier (Radix-8)

2721 12.081ns

Ref [14]- Modified Booth
multiplier (Radix-16)

7161 11.564ns

Ref [14] 2704 9.536ns

Proposed multiplier 1545 13.141ns

TABLE VIII - Delay and area comparison of SP-floating point

multiplier with proposed SP FP multiplier

 Slices LUTs Delay
Ref [16] 1269 2270 18.783ns

Ref [8] 1149 1146 --

Proposed
multiplier

976 1091 16.392ns

View publication stats

https://www.researchgate.net/publication/308842227

