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Abstract: Floating point multiplication is a crucial 
operation in high power computing applications such as image 
processing, signal processing etc. And also multiplication is 
the most time and power consuming operation. This paper 
proposes an efficient method for IEEE 754 floating point 
multiplication which gives a better implementation in terms of 
delay and power. A combination of Karatsuba algorithm and 
Urdhva-Tiryagbhyam algorithm (Vedic Mathematics) is used 
to implement unsigned binary multiplier for mantissa 
multiplication. The multiplier is implemented using Verilog 
HDL, targeted on Spartan-3E and Virtex-4 FPGA. 
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I. INTRODUCTION  
    Floating point multiplication units are an essential IP for 
modern multimedia and high performance computing such as 
graphics acceleration, signal processing, image processing etc. 
There are lot of effort is made over the past few decades to 
improve performance of floating point computations. Floating 
point units are not only complex, but also require more area 
and hence more power consuming as compared to fixed point 
multipliers. And the complexity of the floating point unit 
increases as accuracy becomes a major issue. IEEE 754 [1] 
support different floating point formats such as Single 
Precision format, Double Precision format, Quadruple 
Precision format etc. But as the precision increases, multiplier 
area, delay and power increases drastically. In the proposed 
paper, we present a new multiplication method which uses a 
combination of Karatsuba and Urdhva-Tiryagbhyam (Vedic 
Mathematics) algorithm for multiplication. This combination 
not only reduces delay, but also reduces the percentage 
increase in hardware as compared to conventional methods. 
    IEEE 754 format specifies two different formats namely 
single precision and double precision format [1, 2]. Fig. 1 
shows the different IEEE 754 floating point formats used 
commonly. The Single precision format is of 32-bit wide and 
Double precision format is of 64-bit wide. The Most 

Significand Bit is the sign bit. The exponent is a signed 
integer. It is often represented as an unsigned value by adding 
a bias. In  
Single precision format, the exponent is of 8-bit wide and the 
bias is 127, i.e. the exponent has a range ofሺെ127 128 ݋ݐሻ. In 
Double precision format, the exponent is of 11-bit wide and 
the bias is 1023, i.e. the exponent has a range 
ofሺെ1023 1024 ݋ݐሻ.  The mantissa or significand of Single 
precision format is of 23-bit and of double precision format is 
of 52 bit wide. The maximum value that can be represented 
using floating point format is  ݈݂ܽ݀݊ܽܿ݅݅݊݃݅ݏ ݐݏ݁݃ݎ ൈ  .௟௔௥௚௘௦௧ ௘௫௣௢௡௘௡௧݁ݏܾܽ
And the minimum value that can be represented is  ݂݀݊ܽܿ݅݅݊݃݅ݏ ݐݏ݈݈݁ܽ݉ݏ ൈ ௦௠௔௟௟௘௦௧ ௘௫௣௢௡௘௡௧݁ݏܾܽ .  

II. FLOATING POINT MULTIPLIER DESIGN  
    A floating point number has four parts: sign, exponent, 
significand or mantissa and the exponent base. A floating 
point number is represented in IEEE-754 format [1, 2] as  േݏ ൈ  ܾ௘  or  േ݂݀݊ܽܿ݅݅݊݃݅ݏ ൈ  ௘௫௣௢௡௘௡௧ . The exponent݁ݏܾܽ
base for binary format is 2. To perform multiplication of two 
floating point numbers േ1ݏ ൈ  ܾ௘ଵ and േ2ݏ ൈ  ܾ௘ଶ, the 
significant or mantissa parts are multiplied to get the product 
mantissa and exponents are added to get the product exponent. 
i.e.; the product is േሺ1ݏ ൈ 2ሻݏ  ൈ  ܾሺ௘ଵା௘ଶሻ. The hardware 
block diagram of floating point multiplier is shown in fig. 2.  
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Fig. 1 Floating point formats in the proposed model 
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floating point multiplier [3] is described belo

 

A. Sign Calculation 
    The MSB of floating point number repre
The sign of the product will be positive if 
are of same sign and will be negative if
opposite sign. So, to obtain the sign of the pr
a simple XOR gate as the sign calculator. 

B. Addition of Exponents 
    To get the product exponent, the input ex
together. Since we use a bias in the floa
exponent, we need to subtract the bias f
exponents to get the actual exponent. The127ଵ଴ (01111111ଶ) for single precis1023ଵ଴(0111111111ଶ) for double prec
proposed custom precision format also, a bia
    The computational time of mantiss
operation is much more that the exponen
simple ripple carry adder and ripple bor
optimal for exponent addition. 

C. Karatsuba-Urdhva Tiryagbhyam binary m
    In floating point multiplication, mos
complex part is the mantissa multiplicatio
operation requires more time compared to ad
number of bits increase, it consumes more 
double precision format, we need a 53x53 bi
single precision format we need 24x24 
requires much time to perform these operat
major contributor to the delay of the floating
To make the multiplication operation more 
faster, the proposed model uses a combina
algorithm and Urdhva Tiryagbhyam algorithm

Fig. 2 Floating point multiplier 
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    Karatsuba algorithm uses a
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Fig. 3 Karatsuba-Urd
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The partial products are obtained from the s
The line notation of the steps is shown in Fig
 

Step1: t0ሺ1ܾ݅ݐሻ ൌ a0b0. 
Step2: t1ሺ2ܾ݅ݐሻ ൌ a1b0 ൅ a0b1. 
Step3: t2ሺ2ܾ݅ݐሻ ൌ a2b0 ൅ a1b1 ൅ a0b2 
Step4: t3ሺ3ܾ݅ݐሻ ൌ a3b0 ൅ a2b1 ൅ a1b2 ൅
Step5: t4ሺ2ܾ݅ݐሻ ൌ a3b1 ൅ a2b2 ൅ a1b3. 
Step6: t5ሺ2ܾ݅ݐሻ ൌ a3b2 ൅ a2b3. 
Step7: t6ሺ1ܾ݅ݐሻ ൌ a3b3 

 
The product is obtained by adding s1, s2 
below, where s1, s2 ܽ݊݀ s3 are the partial sum
 s1 ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ t0 s2 ൌ t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ s3 ൌ t3ሾ2ሿ 
 
Product ൌ t6  t5ሾ0ሿ  t4ሾ0ሿ  t3ሾ0ሿ  t2ሾ0ሿ  t1ሾ0ሿ 
          t5ሾ1ሿ  t4ሾ1ሿ  t3ሾ1ሿ  t2ሾ1ሿ  t1ሾ1ሿ 
                    t3ሾ2ሿ       0          0         0 
 
            p7 p6   p5      p4       p3       p2       p1      

 
This method can be further optimize

number of hardware. A more optimized hard
[9, 10] is shown in Fig. 5. This model 
eliminate the need for three operand 7-bit 
reduces hardware and delay. The adders 
ripple manner.  

Fig. 4 Line notation of Urdhva Tiryagbh
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Since there are more than two operands in 
can use carry save addition to implement ad
technique reduces the delay to a great exten
ripple carry adder. 
Karatsuba Algorithm for multiplication 
Karatsuba multiplication algorithm [11, 12]
multiplying very large numbers. This metho
Anatoli Karatsuba in 1962. It is a divide and
in which we divide the numbers into their
half and Least Significant half and then 
performed.  
Karatsuba algorithm reduces the numbe
required by replacing multiplication opera
operations. Additions operations are faster th
and hence the speed of multiplier is increase
of bits of inputs increase, Karatsuba algorith
efficient. This algorithm is optimal if width
than 16 bits. The hardware architecture of Ka
is shown in fig. 6. Karatsuba algorithm for tw
can be explained as follow. 

 
Productൌ ܺ. ܻ 
X and Y can be written as, 

       ܺ ൌ 2௡/ଶ.  Xl ൅  Xr 
       ܻ ൌ 2௡/ଶ.  Yl ൅  Yr   

Where  Xl,  Yl and  Xr,  Yr are the Most Sig
Least Significant half of X and Y respectiv
number of bits. 
Then,  ܺ. ܻ ൌ ቀ2೙మ.  Xl ൅  Xrቁ . ሺ2೙మ.  Yl ൅  Yr
             ൌ 2௡.  Xl Yl ൅ 2௡/ଶ ሺ Xl Yr ൅  Xr Ylሻ ൅

 
The Second term in equation (3) can be optim
the number of multiplication operations.  
 
i.e.;     Xl Yr ൅  Xr Yl ൌ ሺ Xl ൅  Xrሻሺ Yl ൅  Yrሻ െ

Fig. 6 Karatsuba multiplier 
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The equation (3) can be re-writܺ. ܻ ൌ 2௡.  Xl Yl ൅  Xr Yr ൅
      െ X
  
The recurrence of Karatsuba alܶሺ݊ሻ ൌ 3ܶ ቀ2݊ቁ ൅
D. Normalization of the result 
    Floating point representatio
mantissa, which always has a v
in the memory to save one bit
considered to be the hidden bit
left of decimal point. Usua
shifting, so that the MSB of m
radix 2, nonzero means 1. The
multiplication result is shifted 
immediate left of decimal p
operation of the result, the exp
one. This is called normalizatio
of hidden bit is always 1, it is c

E. Representation of exception
    Some of the numbers ca
normalized significand. To rep
code is assigned to it. In the 
output signals namely Zero, Inf
Denormal to represent these  ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 0 and ݃݅ݏ
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the product has  ݁ݐ݊݁݊݋݌ݔ ൅ ܾ
then the result is represented
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III. IMPLIMENTA

    The main objective of this p
a floating point multiplier w
operation both in terms of d
multiplication is the most com
multiplier, we designed a mult
speed and increase in delay an
increase in number of bits. 
IEEE-754 standard format is im
and tested. The multiplier u
replacing simple adders with e
adders and carry save adders. 
simulated using Xilinx Synthes
Saprtan-3E and Virtex-4 fpga
Virtex-4 fpga is given in table 

 

           (4) 
tten as,  ൅ 2೙మ ሺሺ Xl ൅  Xrሻሺ Yl ൅  Yrሻ l Yl െ  Xr Yrሻ                          (5) 

lgorithm is, ൅ ܱሺ݊ሻ  ܱሺ݊ଵ.ହ଼ହሻ 

ons have a hidden bit in the 
value 1 and hence it is not stored 
. A leading 1 in the mantissa is 
t, i.e. the 1 just immediate to the 
lly normalization is done by 

mantissa becomes nonzero and in 
e decimal point in the mantissa 
left if the leading 1 is not at the 

point. And for each left shift 
ponent value is incremented by 
on of the result. Since the value 

called ‘hidden 1’. 

ns 
annot be represented with a 
present those numbers a special 
 proposed model, we use four 
finity, NaN (Not-a-number) and 
exceptions. If the product has ݂݃݊݅݅ܿܽ݊݀ ൌ 0, then the result 
oduct has  ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ
en the result is taken as Infinity 

product has ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0, then the 
malized values or Denormals are 
and with the smallest possible 
ed to represent certain small 
ented as normalized numbers. If ܾ݅ܽݏ ൌ 0 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0, 
d as Denormal. Denaormal is 
where s is the significand. 

ATION AND RESULTS 
aper is to design and implement 

which must be efficient in its 
delay and area. Since mantissa 
mplex part in the floating point 
tiplier which can operate at high 
nd area is significantly less with 
Floating point multiplier with 

mplemented using Verilog HDL 
units are further optimized by 
efficient adders like carry select 
 The model is synthesized and 
sis Tools (ISE 14.7) targeted on 
a. The summary of results on 
I and table II. Comparison with 



various multiplier units is given in tables III, IV, V, VI and 
VII. 

 

IV. CONCLUSION AND FUTURE WORK 
    This paper shows how to effectively reduce the percentage 
increase in delay and area of a floating point multiplier by 
using a very efficient combination of Karatsuba and Urdhva-
Tiryagbhyam algorithms. The model can be further optimized 
in terms of delay by using pipelining methods and precision of 
the result can be increased by adding efficient truncation and 
rounding methods. 
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