
An efficient floating point multiplier design for high
speed applications using Karatsuba algorithm and

Urdhva-Tiryagbhyam algorithm

Abstract: Floating point multiplication is a crucial
operation in high power computing applications such as image
processing, signal processing etc. And also multiplication is
the most time and power consuming operation. This paper
proposes an efficient method for IEEE 754 floating point
multiplication which gives a better implementation in terms of
delay and power. A combination of Karatsuba algorithm and
Urdhva-Tiryagbhyam algorithm (Vedic Mathematics) is used
to implement unsigned binary multiplier for mantissa
multiplication. The multiplier is implemented using Verilog
HDL, targeted on Spartan-3E and Virtex-4 FPGA.

Keywords: fpga, Floating point multiplier, Vedic
mathematics, Urdhva-Tiryagbhyam, Karatsuba

I. INTRODUCTION
 Floating point multiplication units are an essential IP for
modern multimedia and high performance computing such as
graphics acceleration, signal processing, image processing etc.
There are lot of effort is made over the past few decades to
improve performance of floating point computations. Floating
point units are not only complex, but also require more area
and hence more power consuming as compared to fixed point
multipliers. And the complexity of the floating point unit
increases as accuracy becomes a major issue. IEEE 754 [1]
support different floating point formats such as Single
Precision format, Double Precision format, Quadruple
Precision format etc. But as the precision increases, multiplier
area, delay and power increases drastically. In the proposed
paper, we present a new multiplication method which uses a
combination of Karatsuba and Urdhva-Tiryagbhyam (Vedic
Mathematics) algorithm for multiplication. This combination
not only reduces delay, but also reduces the percentage
increase in hardware as compared to conventional methods.
 IEEE 754 format specifies two different formats namely
single precision and double precision format [1, 2]. Fig. 1
shows the different IEEE 754 floating point formats used
commonly. The Single precision format is of 32-bit wide and
Double precision format is of 64-bit wide. The Most

Significand Bit is the sign bit. The exponent is a signed
integer. It is often represented as an unsigned value by adding
a bias. In
Single precision format, the exponent is of 8-bit wide and the
bias is 127, i.e. the exponent has a range ofሺെ127 128 ݋ݐሻ. In
Double precision format, the exponent is of 11-bit wide and
the bias is 1023, i.e. the exponent has a range
ofሺെ1023 1024 ݋ݐሻ. The mantissa or significand of Single
precision format is of 23-bit and of double precision format is
of 52 bit wide. The maximum value that can be represented
using floating point format is ݈݂ܽ݀݊ܽܿ݅݅݊݃݅ݏ ݐݏ݁݃ݎ ൈ .௟௔௥௚௘௦௧ ௘௫௣௢௡௘௡௧݁ݏܾܽ
And the minimum value that can be represented is ݂݀݊ܽܿ݅݅݊݃݅ݏ ݐݏ݈݈݁ܽ݉ݏ ൈ ௦௠௔௟௟௘௦௧ ௘௫௣௢௡௘௡௧݁ݏܾܽ .

II. FLOATING POINT MULTIPLIER DESIGN
 A floating point number has four parts: sign, exponent,
significand or mantissa and the exponent base. A floating
point number is represented in IEEE-754 format [1, 2] as േݏ ൈ ܾ௘ or േ݂݀݊ܽܿ݅݅݊݃݅ݏ ൈ ௘௫௣௢௡௘௡௧ . The exponent݁ݏܾܽ
base for binary format is 2. To perform multiplication of two
floating point numbers േ1ݏ ൈ ܾ௘ଵ and േ2ݏ ൈ ܾ௘ଶ, the
significant or mantissa parts are multiplied to get the product
mantissa and exponents are added to get the product exponent.
i.e.; the product is േሺ1ݏ ൈ 2ሻݏ ൈ ܾሺ௘ଵା௘ଶሻ. The hardware
block diagram of floating point multiplier is shown in fig. 2.

Double precision
1 11 52
Sign Exponent Mantissa

Single precision
1 8 23
Sign Exponent Mantissa

Fig. 1 Floating point formats in the proposed model

R.K.Sharma

School of VLSI Design and Embedded Systems
National Institute of Technology Kurukshetra

Kurukshetra, India
rksharama@nitkkr.ac.in

Arish S

School of VLSI Design and Embedded Systems
National Institute of Technology Kurukshetra

Kurukshetra, India
arishsu@gmail.com

Cite as: S. Arish and R. K. Sharma, "An efficient floating point multiplier design for high speed applications using Karatsuba algorithm and Urdhva-Tiryagbhyam
algorithm," 2015 International Conference on Signal Processing and Communication (ICSC), Noida, 2015, pp. 303-308. doi: 10.1109/ICSPCom.2015.7150666

 The important blocks in the implementa
floating point multiplier [3] is described belo

A. Sign Calculation
 The MSB of floating point number repre
The sign of the product will be positive if
are of same sign and will be negative if
opposite sign. So, to obtain the sign of the pr
a simple XOR gate as the sign calculator.

B. Addition of Exponents
 To get the product exponent, the input ex
together. Since we use a bias in the floa
exponent, we need to subtract the bias f
exponents to get the actual exponent. The127ଵ଴ (01111111ଶ) for single precis1023ଵ଴(0111111111ଶ) for double prec
proposed custom precision format also, a bia
 The computational time of mantiss
operation is much more that the exponen
simple ripple carry adder and ripple bor
optimal for exponent addition.

C. Karatsuba-Urdhva Tiryagbhyam binary m
 In floating point multiplication, mos
complex part is the mantissa multiplicatio
operation requires more time compared to ad
number of bits increase, it consumes more
double precision format, we need a 53x53 bi
single precision format we need 24x24
requires much time to perform these operat
major contributor to the delay of the floating
To make the multiplication operation more
faster, the proposed model uses a combina
algorithm and Urdhva Tiryagbhyam algorithm

Fig. 2 Floating point multiplier

ation of proposed
ow.

esents the sign bit.
both the numbers

f numbers are of
roduct, we can use

xponents are added
ating point format
from the sum of
e value of bias is
ion format and
ision format. In

as of 127 is used.
sa multiplication
nt addition. So a
rrow subtracter is

multiplier
st important and
on. Multiplication
ddition. And as the

area and time. In
it multiplier and in
bit multiplier. It

tions and it is the
g point multiplier.
area efficient and

ation of Karatsuba
m.

 Karatsuba algorithm uses a
where it breaks down the input
Least Significant half and th
operands are of 8-bits wide. Ka
for operands of higher bit lengt
not as efficient as it is at highe
problem, Urdhva Tiryagbhyam
stages. The model of Urdh
shown in Fig. 3.

 Urdhva Tiryagbhyam algor
binary multiplication in terms
number of bits increases, dela
products are added in a ripple
multiplication, it requires 6
manner. And 8-bit multiplicatio
Compensating the delay wil
Urdhva Tiryagbhyam algorith
number of bits is much more. I
higher stages and Urdhva Tir
stages, it can somewhat compe
algorithms and hence the mul
The circuit is further optimized
save adders instead of ripple
delay to a great extent with
These two algorithms are exp
sections.

 Urdhva Tiryagbhyam algorith
 Urdhva-Tiryagbhyam sutra i
method for multiplication [4, 5
applicable to all cases of mult
short and consists of only on
‘Vertically and crosswise’. In U
the number of steps required fo
and hence the speed of multipli
 An illustration of steps for c
bit numbers is shown belowa3a2a1a0 and b3b2b1b0 and le
product. And the temporary par

Fig. 3 Karatsuba-Urd

a divide and conquer approach
ts into Most Significant half and
his process continues until the
aratsuba algorithm is best suited
th. But at lower bit lengths, it is
er bit lengths. To eliminate this

m algorithm is used at the lower
hva-Tiryagbhyam algorithm is

rithm is the best algorithm for
s of area and delay. But as the
ay also increases as the partial
manner. For example, for 4-bit
adders connected in a ripple

on requires 14 adders and so on.
ll cause increase in area. So
hm is not that optimal if the
If we use Karatsuba algorithm at
ryagbhyam algorithm at lower

ensate the limitations in both the
ltiplier becomes more efficient.
d by using carry select and carry
carry adders. This reduces the
minimal increase in hardware.
plained in detail in the below

m for multiplication
is an ancient Vedic mathematics
5, 6, 7]. It is a general formula
tiplication. The formula is very
ne compound word and means
Urdhva Tiryagbhyam algorithm,
or multiplication can be reduced
ication is increased.
computing the product of two 4-
w [8, 9]. The two input are
t the p7p6p5p4p3p2p1p0 be the
rtial products are t0, t1, t2, … , t6.

dhva multiplier model

The partial products are obtained from the s
The line notation of the steps is shown in Fig

Step1: t0ሺ1ܾ݅ݐሻ ൌ a0b0.
Step2: t1ሺ2ܾ݅ݐሻ ൌ a1b0 ൅ a0b1.
Step3: t2ሺ2ܾ݅ݐሻ ൌ a2b0 ൅ a1b1 ൅ a0b2
Step4: t3ሺ3ܾ݅ݐሻ ൌ a3b0 ൅ a2b1 ൅ a1b2 ൅
Step5: t4ሺ2ܾ݅ݐሻ ൌ a3b1 ൅ a2b2 ൅ a1b3.
Step6: t5ሺ2ܾ݅ݐሻ ൌ a3b2 ൅ a2b3.
Step7: t6ሺ1ܾ݅ݐሻ ൌ a3b3

The product is obtained by adding s1, s2
below, where s1, s2 ܽ݊݀ s3 are the partial sum
 s1 ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ t0 s2 ൌ t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ s3 ൌ t3ሾ2ሿ

Product ൌ t6 t5ሾ0ሿ t4ሾ0ሿ t3ሾ0ሿ t2ሾ0ሿ t1ሾ0ሿ
 t5ሾ1ሿ t4ሾ1ሿ t3ሾ1ሿ t2ሾ1ሿ t1ሾ1ሿ
 t3ሾ2ሿ 0 0 0

 p7 p6 p5 p4 p3 p2 p1

This method can be further optimize

number of hardware. A more optimized hard
[9, 10] is shown in Fig. 5. This model
eliminate the need for three operand 7-bit
reduces hardware and delay. The adders
ripple manner.

Fig. 4 Line notation of Urdhva Tiryagbh

steps given below.
g. 4.

൅ a0b3.
ܽ݊݀ s3 as shown
m obtained.

 t0 + 0 + 0 p0

ed to reduce the
dware architecture
actually helps to

t adder and hence
are connected in

The expressions for produp0 ൌ a0b0 p1 ൌ ൌ 1 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺa1b0 ݂݋ ܤܵܮ ൅ a0b1ሻ p2 ൌ ൌ 2 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDER1ሻp3 ݂݋ ܤܵܮ ൌ 3 ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ
 ൌ ሺMSBሺADDER 2ሻp4 ݂݋ ܤܵܮ ൌ 4ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDERp5 ݂݋ ܤܵܮ ൌ 5ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺADDp6 ݂݋ ܤܵܮ ൌ 6ൌ ܴܧܦܦܣሺ݉ݑ൫ܵ ݂݋ ܤܵܮ ሺMSBሺp7 ݂݋ ܤܵܮ ൌ ܴܧܦܦܣ ݂݋ ݕݎݎܽܥ

hyam sutra

Fig. 5 Hardware arch
Tiryagbhya

uct bits are as shown below. 1ሻ൯ 2ሻ൯ ሻ൅a2b0 ൅ a1b1 ൅ a0b2ሻ 3ሻ൯ ሻ൅a3b0 ൅ a2b1 ൅ a1b2 ൅ a0b3ሻ 4ሻ൯ R1ሻ൅a3b1 ൅ a2b2 ൅ a1b3ሻ 5ሻ൯ DER1ሻ൅a3b2 ൅ a2b3ሻ 6ሻ൯ ሺADDER1ሻ൅a3b3ሻ

hitecture for 4x4 Urdhva
am multiplier.

Since there are more than two operands in
can use carry save addition to implement ad
technique reduces the delay to a great exten
ripple carry adder.
Karatsuba Algorithm for multiplication
Karatsuba multiplication algorithm [11, 12]
multiplying very large numbers. This metho
Anatoli Karatsuba in 1962. It is a divide and
in which we divide the numbers into their
half and Least Significant half and then
performed.
Karatsuba algorithm reduces the numbe
required by replacing multiplication opera
operations. Additions operations are faster th
and hence the speed of multiplier is increase
of bits of inputs increase, Karatsuba algorith
efficient. This algorithm is optimal if width
than 16 bits. The hardware architecture of Ka
is shown in fig. 6. Karatsuba algorithm for tw
can be explained as follow.

Productൌ ܺ. ܻ
X and Y can be written as,

 ܺ ൌ 2௡/ଶ. Xl ൅ Xr
 ܻ ൌ 2௡/ଶ. Yl ൅ Yr

Where Xl, Yl and Xr, Yr are the Most Sig
Least Significant half of X and Y respectiv
number of bits.
Then, ܺ. ܻ ൌ ቀ2೙మ. Xl ൅ Xrቁ . ሺ2೙మ. Yl ൅ Yr
 ൌ 2௡. Xl Yl ൅ 2௡/ଶ ሺ Xl Yr ൅ Xr Ylሻ ൅

The Second term in equation (3) can be optim
the number of multiplication operations.

i.e.; Xl Yr ൅ Xr Yl ൌ ሺ Xl ൅ Xrሻሺ Yl ൅ Yrሻ െ

Fig. 6 Karatsuba multiplier

adders 2 to 5, we
dders 2 to 5. This
d compared to the

 is best suited for
d is discovered by
d conquer method,
r Most Significant

multiplication is

er of multipliers
ations by addition
han multiplications
ed. As the number
hm becomes more

h of inputs is more
aratsuba algorithm
wo inputs X and Y

 (1)
 (2)

gnificant half and
vely, and n is the

ሻ ൅ Xr Yr (3)

mized to reduce

െ Xl Yl െ Xr Yr

The equation (3) can be re-writܺ. ܻ ൌ 2௡. Xl Yl ൅ Xr Yr ൅
 െ X

The recurrence of Karatsuba alܶሺ݊ሻ ൌ 3ܶ ቀ2݊ቁ ൅
D. Normalization of the result
 Floating point representatio
mantissa, which always has a v
in the memory to save one bit
considered to be the hidden bit
left of decimal point. Usua
shifting, so that the MSB of m
radix 2, nonzero means 1. The
multiplication result is shifted
immediate left of decimal p
operation of the result, the exp
one. This is called normalizatio
of hidden bit is always 1, it is c

E. Representation of exception
 Some of the numbers ca
normalized significand. To rep
code is assigned to it. In the
output signals namely Zero, Inf
Denormal to represent these ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 0 and ݃݅ݏ
is taken as Zero (±0). If the pro255 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ൌ 0, the
(∞). If the ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ 255 and ݏ
result is taken as NaN. Denorm
numbers without a hidden 1
exponent. Denormals are us
numbers that cannot be represe
the product has ݁ݐ݊݁݊݋݌ݔ ൅ ܾ
then the result is represented
represented as േ0. s ൈ 2ିଵଶ଺ , w

III. IMPLIMENTA

 The main objective of this p
a floating point multiplier w
operation both in terms of d
multiplication is the most com
multiplier, we designed a mult
speed and increase in delay an
increase in number of bits.
IEEE-754 standard format is im
and tested. The multiplier u
replacing simple adders with e
adders and carry save adders.
simulated using Xilinx Synthes
Saprtan-3E and Virtex-4 fpga
Virtex-4 fpga is given in table

 (4)
tten as, ൅ 2೙మ ሺሺ Xl ൅ Xrሻሺ Yl ൅ Yrሻ l Yl െ Xr Yrሻ (5)

lgorithm is, ൅ ܱሺ݊ሻ ܱሺ݊ଵ.ହ଼ହሻ

ons have a hidden bit in the
value 1 and hence it is not stored
. A leading 1 in the mantissa is
t, i.e. the 1 just immediate to the
lly normalization is done by

mantissa becomes nonzero and in
e decimal point in the mantissa
left if the leading 1 is not at the

point. And for each left shift
ponent value is incremented by
on of the result. Since the value

called ‘hidden 1’.

ns
annot be represented with a
present those numbers a special
 proposed model, we use four
finity, NaN (Not-a-number) and
exceptions. If the product has ݂݃݊݅݅ܿܽ݊݀ ൌ 0, then the result
oduct has ݁ݐ݊݁݊݋݌ݔ ൅ ݏܾܽ݅ ൌ
en the result is taken as Infinity

product has ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0, then the
malized values or Denormals are
and with the smallest possible
ed to represent certain small
ented as normalized numbers. If ܾ݅ܽݏ ൌ 0 and ݂݀݊ܽܿ݅݅݊݃݅ݏ ് 0,
d as Denormal. Denaormal is
where s is the significand.

ATION AND RESULTS
aper is to design and implement

which must be efficient in its
delay and area. Since mantissa
mplex part in the floating point
tiplier which can operate at high
nd area is significantly less with
Floating point multiplier with

mplemented using Verilog HDL
units are further optimized by
efficient adders like carry select
 The model is synthesized and
sis Tools (ISE 14.7) targeted on
a. The summary of results on
I and table II. Comparison with

various multiplier units is given in tables III, IV, V, VI and
VII.

IV. CONCLUSION AND FUTURE WORK
 This paper shows how to effectively reduce the percentage
increase in delay and area of a floating point multiplier by
using a very efficient combination of Karatsuba and Urdhva-
Tiryagbhyam algorithms. The model can be further optimized
in terms of delay by using pipelining methods and precision of
the result can be increased by adding efficient truncation and
rounding methods.

 REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic, 2008.
[2] Computer Arithmetic, Behrooz Parhami, Oxford University Press, 2000.
[3] B. Jeevan , S. Narender , C.V. Krishna Reddy, K. Sivani, “A High

SpeedBinary Floating Point Multiplier Using Dadda Algorithm”,
International Multi-Conference on Automation, Computing,
Communication, Control and Compressed Sensing, pp. 455-460, 2013

[4] “Vedic mathematics”, Swami Sri Bharati Krsna Thirthaji Maharaja,
Motilal Banarasidass Indological publishers and Book sellers, 1965

[5] R. Sridevi, Anirudh Palakurthi, Akhila Sadhula, Hafsa Mahreen, “Design
of a High Speed Multiplier (Ancient Vedic Mathematics Approach)”,
International Journal of Engineering Research (ISSN : 2319-6890),
Volume No.2, Issue No.3, pp : 183-186, July 2013

TABLE I
Performance analysis of Karatsuba-Urdhva multipliers

 8-bit

multiplier
16-bit

multiplier
24-bit

multiplier
32-bit

multiplier
Slices 113 410 972 1389

LUTs 120 451 1018 1545

IOBs 33 65 97 129

Delay 9.396ns 11.514ns 12.996ns 13.141ns

௠݂௔௫
(MHz)

274.469 248.964 226.508 209.606

Logic
levels

14 22 31 39

TABLE II
 Performance analysis of Floating point multipliers in the proposed

model.

Slices

LUTs

IOBs

Delay
(ns)

 ௠݂௔௫
(MHz)

Max.
comb.
path
delay(ns)

Single
precision

977 1073 97 16.182 226.508 9.831

Double
precision

3877 4033 193 18.966 173.952 10.736

TABLE III
Delay comparison of various 8-bit multipliers with proposed

Karatsuba-Urdhva multiplier
 Ref. [8] Ref. [9] Ref. [13] Proposed

multiplier
Width 8-bit 8-bit 8-bit 8-bit

Delay 28.27ns 15.050ns 23.973ns 9.396ns

TABLE IV
 Delay comparison of various 16-bit multipliers with proposed

Karatsuba-Urdhva multiplier
 Ref. [14]-vedic

multiplier
Ref. [7] Proposed

multiplier
Width 16-bit 16-bit 16-bit

Delay 13.452ns 27.148ns 11.514ns

TABLE V

Delay and area comparison of 24-bit multipliers with proposed
Karatsuba-Urdhva multiplier

 Slices LUTs Delay
Ref. [15] 1306 2329 16.316ns

Proposed
multiplier

972 1018 12.996ns

TABLE VI
 Delay and area comparison of 32-bit multipliers with

proposed Karatsuba-Urdhva multiplier
 LUTs Delay

Ref. [14]- Modified Booth
multiplier (Radix-8)

2721 12.081ns

Ref. [14]- Modified Booth
multiplier (Radix-16)

7161 11.564ns

Ref. [14] 2704 9.536ns

Proposed multiplier 1545 13.141ns

 TABLE VII
Delay and area comparison of SP-floating point multiplier with

proposed SP FP multiplier
 Slices LUTs Delay

Ref. [15] 1269 2270 18.783ns

Ref. [3] 1149 1146 --

Proposed
multiplier

977 1073 16.182ns

[6] Nivedita A. Pande, Vaishali Niranjane, Anagha V. Choudhari, “Vedic
Mathematics for Fast Multiplication in DSP”, International Journal of
Engineering and Innovative Technology (IJEIT), Volume 2, Issue 8, pp.
245-247, February 2013

[7] R.K. Bathija, R.S. Meena, S. Sarkar, Rajesh Sahu, “Low Power High
Speed 16x16 bit Multiplier using Vedic Mathematics”, International
Journal of Computer Applications (0975 – 8887), Volume 59– No.6, pp.
41-44, December 2012

[8] Poornima M, Shivaraj Kumar Patil, Shivukumar , Shridhar K P , Sanjay
H, “Implementation of Multiplier using Vedic Algorithm”, International
Journal of Innovative Technology and Exploring Engineering (IJITEE),
ISSN: 2278-3075, Volume-2, Issue-6, pp. 219-223, May 2013

[9] Premananda B.S., Samarth S. Pai, Shashank B., Shashank S. Bhat,
“Design and Implementation of 8-Bit Vedic Multiplier”, International
Journal of Advanced Research in Electrical, Electronics and
Instrumentation Engineering, Vol. 2, Issue 12, pp. 5877-5882, December
2013

[10] Harpreet Singh Dhillon, Abhijit Mitra, “A Reduced-Bit Multiplication
Algorithm for Digital Arithmetic”, World Academy of Science,
Engineering and Technology, Vol 19, pp. 719-724, 2008

[11] N.Anane, H.Bessalah, M.Issad, K.Messaoudi, “Hardware
implementation of Variable Precision Multiplication on FPGA”, 4th
International Conference on Design & Technology of Integrated
Systems in Nanoscale Era, pp. 77-81, 2009

[12] Anand Mehta, C. B. Bidhul, Sajeevan Joseph, Jayakrishnan. P,
“Implementation of Single Precision Floating Point Multiplier using
Karatsuba Algorithm”, 2013 International Conference on Green
Computing, Communication and Conservation of Energy (ICGCE), pp.
254-256, 2013

[13] R. Sai Siva Teja, A. Madhusudhan, “FPGA Implementation of Low-
Area Floating Point Multiplier Using Vedic Mathematics”, International
Journal of Emerging Technology and Advanced Engineering, ISSN
2250-2459, Volume 3, Issue 12, pp. 362-366, December 2013.

[14] Jagadeshwar Rao M, Sanjay Dubey, “A High Speed and Area Efficient
Booth Recoded Wallace Tree Multiplier for fast Arithmetic Circuits”,
2012 Asia Pacific Conference on Postgraduate Research in
Microelectronics & Electronics (PRIMEASIA), pp. 220-223, 2012.

[15] Anna Jain, Baisakhy Dash, Ajit Kumar Panda, Muchharla Suresh,
“FPGA Design of a Fast 32-bit Floating Point Multiplier Unit”,
International Conference on Devices, Circuits and Systems (ICDCS), pp.
545-547, 2012

